TREATMENT OF DOMESTIC WASTEWATER IN SHALLOW WASTE STABILIZATION PONDS FOR AGRICULTURAL IRRIGATION REUSE

Valderi Duarte Leite¹, Gilson Barbosa Athayde Junior²*, José Tavares de Sousa, Wilton Silva Lopes¹ and Israël Nunes Henrique¹

¹Department of Chemistry, State University of Paraíba, Campina Grande, Brazil
²Department of Civil and Environmental Engineering, Federal University of Paraíba, João Pessoa, Brazil

Received 20 October 2009; received in revised form 19 December 2009; accepted 30 December 2009

Abstract: Waste stabilization ponds are a well established wastewater treatment system being considered by World Health Organization as one of the most appropriated technology for domestic wastewater when agricultural reuse is considered, especially in developing countries. This study was performed in a series of pilot-scale stabilization ponds, being one facultative and three maturation ponds, with depths varying from 0.44 to 0.57 m. The substrate to be treated was composed of a mixture of domestic wastewater and previously anaerobically treated leachate. The experimental system was monitored in two different phases, in which the hydraulic retention times were 15 (phase 1) and 10 days (phase 2). Thermotolerant coliform removal efficiencies were 3.8 log₁₀ units in both phases while organic matter (BOD₅) removal was 87% and 68% for phases 1 and 2, respectively.

Keywords: Wastewater treatment; agricultural reuse; shallow ponds

* Correspondence to: Gilson Barbosa Athayde Junior, Telefax: +55 83 3216 7355. E-mail: gilson@ct.ufpb.br.
INTRODUCTION

Well designed and operated waste stabilization ponds (WSP) systems can satisfactorily remove undesired constituents from wastewater such as biodegradable organic matter, suspended solids and pathogenic microorganisms, besides to promote the retention of nutrients which favourably contributes to the use of such effluents in agricultural irrigation (Mara, 2001).

Such WSP are a well known technology for the treatment of domestic wastewater and is considered by the World Health Organization (WHO) as the most appropriated means of wastewater treatment when agricultural reuse is considered (WHO, 1989) specially for developing countries, due to its construction, operation and maintenance low costs (Arthur, 1983). Research developed by Silva (1982) has shown the high degree of treatment reached by the effluent of waste stabilization ponds, both in terms of organic matter and pathogenic microorganisms. The high hydraulic retention times (HRT), which are common in WSP systems, in conjunction with adverse factors to microorganisms, are the main cause of the high bacteriological quality effluent, which have also the characteristic of presenting high level of nutrients, being therefore, suitable for agricultural irrigation (Mara, 1996).

According to Arthur (1983), WSP are the most suitable wastewater treatment option for developing countries located in tropical or subtropical regions, where generally land is available and cheap and climate is favourable for the treatment process. The idea of reusing treated wastewater has being developing to be part of the rational use of water resources, besides being an important practice in arid and semi-arid areas (Shilton, 2005), such as northeastern Brazil.

In Brazil, the indirect and uncontrolled reuse of wastewater is a routine practice. This activity is more evident in semi-arid areas in northeastern Brazil, where the lack of wastewater treatment is rapidly negatively affecting the water resources. On the other hand, this region of Brazil, due to its geographic and economical characteristics, has favourable conditions for the wastewater reuse and leads small and medium farmers to use a non conventional water to replace the lack of water for irrigation. Furthermore, the wastewater reuse presents other advantages, such as: water pollution control, water and fertilizers savings, recycle of nutrients and the increase in agricultural production (Athayde Júnior, 1999).

In this context, the objective of this paper is to evaluate the performance of a series of shallow WSP treating domestic wastewater for the production of an effluent suitable for agricultural irrigation according to legal aspects.

MATERIAL AND METHODS

The research was conducted in Estação Experimental de Tratamentos Biológicos de Esgotos Sanitários – EXTRABES, located in Campina Grande – PB, Brazil.

The experimental system comprised four ponds, in which the first is a facultative one and the other three are maturation ponds. The series of WSP were preceded by an UASB which received a mixture of raw sewage (98%) and leachate (2%). The UASB effluent (80%) was mixed with raw sewage (20%) before going to the WSP series. These mixture percentages were used in both experimental phases. Figure 1 schematically shows the pond system, while Table 1 shows the operational features. The parameters analyzed were pH, COD, BOD₅, thermotolerant coliform, total solids, volatile total solids, suspended solids, volatile suspended solids, total alkalinity, volatile acids, ammonia, nitrate, total phosphorus, soluble orthophosphate.

![Fig.1 Scheme of experimental WSP system.](image)
Table 1. Physical and operational features of the WSP system

<table>
<thead>
<tr>
<th>Pond</th>
<th>Width (m)</th>
<th>Length (m)</th>
<th>Depth (m)</th>
<th>Surface area (m²)</th>
<th>Volume (m³)</th>
<th>HRT (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facultative</td>
<td>1.00</td>
<td>2.05</td>
<td>0.57</td>
<td>2.05</td>
<td>1.17</td>
<td>4.7</td>
</tr>
<tr>
<td>Maturation 1</td>
<td>0.88</td>
<td>2.04</td>
<td>0.53</td>
<td>1.79</td>
<td>0.95</td>
<td>3.8</td>
</tr>
<tr>
<td>Maturation 2</td>
<td>0.88</td>
<td>2.01</td>
<td>0.48</td>
<td>1.76</td>
<td>0.84</td>
<td>3.4</td>
</tr>
<tr>
<td>Maturation 3</td>
<td>0.89</td>
<td>2.00</td>
<td>0.44</td>
<td>1.78</td>
<td>0.78</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Physicochemical and microbiological analyses were performed in accordance with APHA et al. (1995), with exception for chlorophyll a, which was determined according to Jones (1979) and sampling occurred weekly during five and four months in phase 1 and 2.

RESULTS

Table 2 shows the results for the characterization of the substrate from the mixture tank, while Table 3 shows the results for the final effluent (maturation pond 3), both for phase 1.

Analyzing data from Table 2, it can be noticed that the substrate used to feed the WSP system presented good conditions for biological treatment, since pH values were around 7.8, with high alkalinity values and low volatile acids concentration. BOD₅ varied from 126 to 262 mg/L while mean value for total solids was 1422 mg/L. BOD₅/COD ratio was 0.41, indicating some biodegradable material. Thermotolerant coliform numbers were around 10⁶ CFU/100 mL.

Table 3 shows the final effluent quality in phase 1. This effluent was alkaline, with maximum pH of 9.4, due to the photosynthetic activity of algae, which were characterized by chlorophyll a values of up to 678 µg/L. BOD₅ removal efficiency was 89%, with final effluent concentration of 20 mg/L. BOD₅/COD ratio was 0.41, indicating some biodegradable material. Thermotolerant coliform numbers were around 10⁶ CFU/100 mL.

Table 2. Mixture tank substrate characterization – phase 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>n</th>
<th>minimum</th>
<th>maximum</th>
<th>mean¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td>18</td>
<td>7.7</td>
<td>8.1</td>
<td>7.8</td>
</tr>
<tr>
<td>Total alkalinity</td>
<td>mgCaCO₃/L</td>
<td>18</td>
<td>282</td>
<td>980</td>
<td>642</td>
</tr>
<tr>
<td>Volatile acids</td>
<td>mgH⁺/L</td>
<td>18</td>
<td>34</td>
<td>110</td>
<td>72</td>
</tr>
<tr>
<td>BOD₅</td>
<td>mg/L</td>
<td>16</td>
<td>126</td>
<td>262</td>
<td>183</td>
</tr>
<tr>
<td>COD</td>
<td>mg/L</td>
<td>17</td>
<td>304</td>
<td>661</td>
<td>445</td>
</tr>
<tr>
<td>Total solids</td>
<td>mg/L</td>
<td>18</td>
<td>1007</td>
<td>2114</td>
<td>1422</td>
</tr>
<tr>
<td>Volatile total solids</td>
<td>mg/L</td>
<td>18</td>
<td>208</td>
<td>1444</td>
<td>398</td>
</tr>
<tr>
<td>Suspended solids</td>
<td>mg/L</td>
<td>18</td>
<td>92</td>
<td>196</td>
<td>141</td>
</tr>
<tr>
<td>Volatile suspended solids</td>
<td>mg/L</td>
<td>14</td>
<td>83</td>
<td>167</td>
<td>118</td>
</tr>
<tr>
<td>Ammonia</td>
<td>mg/L</td>
<td>18</td>
<td>29</td>
<td>117</td>
<td>77</td>
</tr>
<tr>
<td>Total phosphorus</td>
<td>mg/L</td>
<td>16</td>
<td>5.7</td>
<td>18.2</td>
<td>12.0</td>
</tr>
<tr>
<td>Soluble orthophosphate</td>
<td>mg/L</td>
<td>16</td>
<td>3.4</td>
<td>11.2</td>
<td>7.0</td>
</tr>
<tr>
<td>Thermotolerant coliform</td>
<td>CFU/100mL</td>
<td>18</td>
<td>1.8×10⁶</td>
<td>2.4×10⁷</td>
<td>6.5×10⁶</td>
</tr>
</tbody>
</table>
Arithmetic mean for all the parameter except for thermotolerant coliform, which was used the geometric mean.

Table 3. Physicochemical and microbiological characterization of final effluent – phase 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>n</th>
<th>minimum</th>
<th>maximum</th>
<th>mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td>18</td>
<td>7.8</td>
<td>9.4</td>
<td>8.6</td>
</tr>
<tr>
<td>Total alkalinity</td>
<td>mgCaCO₃/L</td>
<td>18</td>
<td>236</td>
<td>629</td>
<td>407</td>
</tr>
<tr>
<td>Volatile acids</td>
<td>mgH₄C/L</td>
<td>18</td>
<td>13</td>
<td>32</td>
<td>22</td>
</tr>
<tr>
<td>BOD₅</td>
<td>mg/L</td>
<td>16</td>
<td>7.7</td>
<td>34.0</td>
<td>20.1</td>
</tr>
<tr>
<td>COD</td>
<td>mg/L</td>
<td>17</td>
<td>61</td>
<td>615</td>
<td>208</td>
</tr>
<tr>
<td>Total solids</td>
<td>mg/L</td>
<td>18</td>
<td>788</td>
<td>1998</td>
<td>1207</td>
</tr>
<tr>
<td>Volatile total solids</td>
<td>mg/L</td>
<td>18</td>
<td>68</td>
<td>843</td>
<td>202</td>
</tr>
<tr>
<td>Suspended solids</td>
<td>mg/L</td>
<td>18</td>
<td>20</td>
<td>109</td>
<td>49</td>
</tr>
<tr>
<td>Volatile suspended solids</td>
<td>mg/L</td>
<td>14</td>
<td>2</td>
<td>95</td>
<td>38</td>
</tr>
<tr>
<td>Ammonia</td>
<td>mg/L</td>
<td>18</td>
<td>1.7</td>
<td>22.0</td>
<td>7.8</td>
</tr>
<tr>
<td>Total phosphorus</td>
<td>g/L</td>
<td>16</td>
<td>2.5</td>
<td>9.1</td>
<td>4.6</td>
</tr>
<tr>
<td>Soluble orthophosphate</td>
<td>mg/L</td>
<td>16</td>
<td>2.0</td>
<td>6.2</td>
<td>3.6</td>
</tr>
<tr>
<td>Thermotolerant coliform</td>
<td>CFU/100mL</td>
<td>18</td>
<td>130</td>
<td>6.6×10⁵</td>
<td>1.0×10⁶</td>
</tr>
</tbody>
</table>

Arithmetic mean for all the parameter except for thermotolerant coliform, which was used the geometric mean.

Table 4. Mixture tank substrate characterization – phase 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>n</th>
<th>minimum</th>
<th>maximum</th>
<th>mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td>18</td>
<td>7.7</td>
<td>8.5</td>
<td>8.0</td>
</tr>
<tr>
<td>Total alkalinity</td>
<td>mgCaCO₃/L</td>
<td>18</td>
<td>264</td>
<td>392</td>
<td>329</td>
</tr>
<tr>
<td>Volatile acids</td>
<td>mgH₄C/L</td>
<td>18</td>
<td>7</td>
<td>56</td>
<td>24</td>
</tr>
<tr>
<td>BOD₅</td>
<td>mg/L</td>
<td>18</td>
<td>13</td>
<td>73</td>
<td>44</td>
</tr>
<tr>
<td>COD</td>
<td>mg/L</td>
<td>18</td>
<td>42</td>
<td>203</td>
<td>149</td>
</tr>
<tr>
<td>Total solids</td>
<td>mg/L</td>
<td>14</td>
<td>614</td>
<td>767</td>
<td>708</td>
</tr>
<tr>
<td>Volatile total solids</td>
<td>mg/L</td>
<td>14</td>
<td>50</td>
<td>137</td>
<td>92</td>
</tr>
<tr>
<td>Suspended solids</td>
<td>mg/L</td>
<td>14</td>
<td>41</td>
<td>106</td>
<td>68</td>
</tr>
<tr>
<td>Volatile suspended solids</td>
<td>mg/L</td>
<td>14</td>
<td>34</td>
<td>88</td>
<td>57</td>
</tr>
<tr>
<td>Ammonia</td>
<td>mg/L</td>
<td>18</td>
<td>14.3</td>
<td>73.3</td>
<td>41.7</td>
</tr>
<tr>
<td>Total phosphorus</td>
<td>mg/L</td>
<td>16</td>
<td>1.1</td>
<td>10.2</td>
<td>5.0</td>
</tr>
<tr>
<td>Soluble orthophosphate</td>
<td>mg/L</td>
<td>16</td>
<td>3.1</td>
<td>4.8</td>
<td>3.8</td>
</tr>
<tr>
<td>Thermotolerant coliform</td>
<td>CFU/100mL</td>
<td>18</td>
<td>6.0×10⁴</td>
<td>7.5×10⁵</td>
<td>2.2×10⁶</td>
</tr>
</tbody>
</table>

Arithmetic mean for all the parameter except for thermotolerant coliform, which was used the geometric mean.

Table 5. Physicochemical and microbiological characterization of final effluent – phase 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>n</th>
<th>minimum</th>
<th>maximum</th>
<th>mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td>18</td>
<td>8.1</td>
<td>9.3</td>
<td>8.7</td>
</tr>
<tr>
<td>Total alkalinity</td>
<td>mgCaCO₃/L</td>
<td>18</td>
<td>194</td>
<td>284</td>
<td>237</td>
</tr>
<tr>
<td>Volatile acids</td>
<td>mgH₄C/L</td>
<td>18</td>
<td>8</td>
<td>20</td>
<td>13</td>
</tr>
<tr>
<td>BOD₅</td>
<td>mg/L</td>
<td>18</td>
<td>3</td>
<td>27</td>
<td>14</td>
</tr>
<tr>
<td>COD</td>
<td>mg/L</td>
<td>18</td>
<td>15</td>
<td>285</td>
<td>120</td>
</tr>
<tr>
<td>Total solids</td>
<td>mg/L</td>
<td>14</td>
<td>636</td>
<td>777</td>
<td>713</td>
</tr>
<tr>
<td>Volatile total solids</td>
<td>mg/L</td>
<td>14</td>
<td>12</td>
<td>74</td>
<td>37</td>
</tr>
<tr>
<td>Suspended solids</td>
<td>mg/L</td>
<td>14</td>
<td>11</td>
<td>69</td>
<td>32</td>
</tr>
<tr>
<td>Ammonia</td>
<td>mg/L</td>
<td>18</td>
<td>2.6</td>
<td>15.0</td>
<td>7.3</td>
</tr>
<tr>
<td>Total phosphorus</td>
<td>mg/L</td>
<td>16</td>
<td>1.1</td>
<td>7.5</td>
<td>4.6</td>
</tr>
<tr>
<td>Soluble orthophosphate</td>
<td>mg/L</td>
<td>16</td>
<td>1.4</td>
<td>7.2</td>
<td>3.8</td>
</tr>
<tr>
<td>Thermotolerant coliform</td>
<td>CFU/100mL</td>
<td>18</td>
<td>22</td>
<td>3.1×10³</td>
<td>3.7×10⁷</td>
</tr>
<tr>
<td>Chlorophyll a</td>
<td>µg/L</td>
<td>17</td>
<td>74.6</td>
<td>1 215.8</td>
<td>271.0</td>
</tr>
</tbody>
</table>

Arithmetic mean for all the parameter except for thermotolerant coliform, which was used the geometric mean.

CONCLUSION

Waste stabilization ponds showed to be suitable for the combined treatment of leachate and domestic wastewater. The series of shallow ponds showed to be very efficient in terms of thermotolerant coliform removal, being needed about 10 of HRT for the effluent to reach the treatment level which is considered suitable for the reuse in irrigation. The substrate BOD₅/COD ratio and the HRT poses influence on the treatment efficiency. Furthermore, the nutrient level found in the final effluent is another aspect which is favourable for the reuse in agricultural irrigation, resulting in water conservation.
REFERENCES

