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Abstract: In this application-based study, the influence of the catchment discretization on the 

optimization of runoff-erosion modeling using a particle swarm optimization to a 
physically-based erosion model named WESP (Watershed Erosion Simulation 
Program) is conducted. This study is carried in the semiarid region of Brazil, more 
precisely in a micro-catchment (MCN3) of Sumé Experimental Basin. A comparative 
assessment is done by statistical analysis and mean relative error (MRE) in order to 
evaluate the performance of the optimization technique when discretizing the 
catchment in different ways. Thus, the catchment is represented in three ways of 
discretization (i.e., n1 = 4 elements, n2 = 10 elements and n3 = 23 elements). The 
difficulties involved in calibration of physically-based erosion models have been partly 
attributable to the lack of robust optimization tools, hence several robust optimization 
techniques have been proposed in the past years; however, the way the catchment is 
represented could interfere on the results. Thus, this paper presents the essential 
concepts of the runoff-erosion WESP model, the global optimization method known as 
Repulsive Particle Swarm (RPS), and the optimization results using the three catchment 
discretization. The results show that there are small differences among the calculated 
sediment yield using the three ways of basin discretization, although the 23 elements 
division seems to give the best results. 
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INTRODUCTION 

The degradation of water quality and quantity are 
among the major environmental problems, which the 
society is facing today. Environmental managers use 
computer modeling to simulate and to better understand 
the natural phenomena that occur in watersheds, in 
order to assist the planning of the use and preservation 
of natural resources. 

In recent years, computer-based runoff-erosion 
models have become a useful tool for water-resources 
management, flood forecasting and control, and 
environmental concerns. For those applications, a 
certain level of accuracy and reliability is expected from 
these models in their ability to describe the hydrologic 
response of a catchment. The influence and importance 
of spatial scale on rainfall-runoff modeling has long 
been recognized. With the advances in computer 
capability and availability, an increasing number of 
hydrologic engineers have changed from using basin-
based, lumped-system hydrologic models to physically-
based, distributed-system models (Mazion Jr. & Yen, 
1994). This change in modeling approach reflects a 
general desire to increase the accuracy and capability to 
describe the hydrologic responses of a catchment. 

The parameterization of runoff-erosion models is an 
important but difficult task because many of the 
parameters in these models are not directly measurable 
in the field and therefore can only be obtained through 
calibration against a historical record of data. Model 
calibration consists of tuning the values of unknown or 
partially known model parameters, such that the model 
predictions fit as closely and consistently as possible to 
the observations. This can be done by visual adjustment 
but the subjective and time-consuming nature of the 
trial-and-error method makes this approach difficult for 
models with a large number of parameters. In this 
widely encountered case, an automatic calibration 
procedure is necessary (Laloy et al., 2010; Soares Júnior 
et al., 2010b; Santos et al., 2011a; Santos et al., 2011b). 

Estimating direct runoff-erosion from a catchment is 
important both from water quantity and quality 
standpoints. In this regard, the use of erosion models 
has gained wider acceptance over lumped models 
because of their ability to handle spatial variability of 
both climatic and topographic parameters. However, 
distributed models tend to be more complex and 
typically need a large number of parameters that need to 
be estimated or measured (Kalin et al., 2003). As the 
spatial scale of the catchment increases, modeling 
hydrologic processes of runoff-erosion and surface 
erosion become more complex.  

Currently, catchment delineation and stream network 
extraction are accomplished by utilizing Geographic 
Information Systems and Digital Elevation Models. The 
most common method of extracting channel networks is 
by specifying a Critical Source Area (CSA) required for 

initiating a channel. However, the results after 
extraction are very sensitive to this threshold value 
(Morris & Heerdegen, 1988; Kalin et al., 2003). The 
specification of the CSA has been based on 
geomorphologic laws (Tarboton et al., 1991), scaling 
invariance of probability distributions of channel 
network attributes (Tarboton et al., 1988; Rodriguez-
Iturbe et al., 1992; Rigon et al., 1993), local slope 
(Kalin et al., 2003) and critical shear stress (Rinaldo et 
al., 1995) and terrain curvature. 

Some studies have used both geomorphologic 
properties and hydrologic responses for determining 
CSAs (Helmlinger et al., 1993; Gandolfi & Bischetti, 
1997). However, the assumptions of constant threshold 
areas and how they are influenced by morphometric and 
scaling properties are often not met in natural 
watersheds (Snell & Sivapalan, 1994). 

Another approach to identify the appropriate CSA 
for channel extraction are exposed in Thieken et al. 
(1999), which utilized the Kineros model to evaluate 
data aggregation on catchment response from synthetic 
rainfall events. Zhang & Montgomery (1994) suggested 
a spatial resolution of 10 m to represent hydrologic 
processes based on simulations with Topmodel. Vieux 
& Needham (1993) investigated the sensitivity of a 
nonpoint-pollution model (AGNPS) to grid cell size. 
Bingner et al. (1997) evaluated the effect of various 
levels of catchment subdivision and sub-catchment size 
on simulated annual sediment yield of fine material 
based on simulations with the SWAT model. 

All of the above studies analyzed the impact of 
watershed subdivision or the selection of the threshold 
area on runoff hydrograph alone, and did not consider 
sediment yield. These studies reported a minimal 
improvement in prediction of sediment yield beyond a 
certain number sub-catchment. 

The major problem concerning the use of physically-
based model in erosion prediction is the need of 
parameters which cannot be directly measured in the 
field. In this context, many algorithms for function 
optimization are employed to find values for those 
parameters. However, it is difficult to assure that the 
final value for the parameter is not a result of either a 
local minimum or another trap. Therefore, more robust 
algorithms are required to estimate the parameter’s final 
value (Soares Júnior et al., 2010a; Santos et al., 2011b). 

Repulsive Particle Swarm (RPS) is a population 
based stochastic optimization technique, inspired by 
social behavior of bird flocking or fish schooling. It 
shares many similarities with evolutionary computation 
techniques such as Genetic Algorithms (Santos et al., 
2003). The system is initialized with a population of 
random solutions and searches for optima by updating 
generations.  

Recently, such a type of optimization technique has 
shown promise as an effective and efficient 
optimization algorithm for calibrating catchment 
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models. This paper presents the essential concepts of the 
RPS and of the physically-based runoff-erosion WESP 
model, with the main objective of verifying the 
influence of the catchment discretization on the 
optimization of WESP model. 
 
WESP MODEL 

Lopes & Lane (1988) developed a physically-based 
distributed model called Watershed Erosion Simulation 
Program (WESP), which computes runoff and sediment 
yield based on kinematic waves approximation for the 
surface flow due to excess rainfall re (m/s), which is 
obtained by the subtraction of the infiltration rate f(t) 
from the rainfall intensity I, i.e., re = I – f(t). The model 
was developed for small basins to generate the 
hydrograph and the respective sedigraph. The 
infiltration process is modeled with the Green-Ampt 
equation (Green & Ampt, 1911), which can be written 
in the form: 
 

    





 


tF
Ktf s 1                           (1) 

 
where, Ks is the effective saturated soil hydraulic 
conductivity (m/s), F(t) is the cumulative depth of 
infiltrated water (m),  is the average suction head at 
the wetting front (m),  is the change in the moisture 
content, and t is the time variable (s). The moisture 
content  and suction head  may be expressed as a 
single parameter that can be called moisture-tension 
parameter Ns, such that: 

  
   iisisN                       (2) 

 
where s is the soil moisture content at saturation, which 
is almost equal to the soil porosity and i is the initial 
soil moisture content. The surface flow is considered to 
be either the overland flow on planes or channel flow. 
 
Overland flow  

The spatially varied overland flow is considered one-
dimensional and is described by Manning’s turbulent 
flow equation: 
 

2/13/21
fH SR

n
u                               (3) 

 
where u is the local mean flow velocity (m/s), RH(x,t) is 
the hydraulic radius (m), Sf is the friction slope and n is 
the Manning friction factor. Thus, the local velocity for 
plane flow can be obtained considering the hydraulic 
radius equal to the depth of flow (RH = h) and using the 
kinematic wave approximation resulting in the friction 
slope being equal to the plane slope (S0 = Sf) as: 

1 mhu                                (4) 
 
where h is the depth of flow (m),   is a parameter 
related to surface slope and roughness, equal to 
(1/n)S0

1/2, and m is a geometry parameter whose value is 
set to 5/3 for wide rectangles. 

The equation of continuity for the one-dimensional 
plane can, then, be written as: 
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From Eqs 4–5, the overland flow velocity and depth 

(u, h) can be calculated for a given rainfall excess re. 
The beginning of surface runoff is obtained by 
determining the pounding time (tp) for an unsteady rain. 

Sediment transport is considered as the erosion rate 
in the plane reduced by the deposition rate within the 
reach. The erosion occurs due to raindrop impact as well 
as surface shear. Thus, the continuity equation for 
sediment transport is expressed as: 
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where c is the sediment concentration in the surface 
flow (kg/m³), eI is the rate of sediment erosion due to 
rainfall impact (kg/m²/s), eR is the erosion rate due to 
shear stress (kg/m2/s), and d is the rate of sediment 
deposition (kg/m²/s).  

The rate of sediment erosion due to rainfall impact eI 
is a function of the rate of detachment by raindrop 
impact and the rate of transport of sediment particles by 
shallow flow. A simple functional form of detachment 
by raindrop impact could use rainfall intensity as a 
measure of the erosivity of raindrop impact (Foster, 
1982), and in order to include the process of sediment 
transport by shallow flow on hillslopes, Lane and 
Shirley (1985) included rainfall and expressed eI as: 

 

i I ee =K Ir  (7) 

 
where KI is the soil detachability parameter (kg.s/m4). 
The rate of sediment erosion due to shear stress eR is 
expressed by an entrainment rate proportional to a 
power of the average shear stress acting on the soil 
surface (Croley II, 1982; Foster, 1982) as: 
 

1.5
r re =K   (8) 

 
where Kr is a soil erodibility factor for shear 
(kg.m/N1.5.s), and  is the effective shear stress (N/m2), 
which is given by  = hSf ,   being the specific weight 
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of water (N/m3). Entrainment and transport of sediment 
occur when the erosive forces exceed the resisting forces.  

Water flowing over the soil surface exerts shear 
forces on the soil particles that tend to move or entrain 
them. On bare soil surface and stream beds, the forces 
that resist the erosion by flowing water depend on the 
size and the distribution of the sediment particles. For 
coarse sediments, the forces resisting entrainment are 
mainly frictional forces that depend on the weight of the 
particles.  

Finer sediments that contain appreciable fractions of 
silt or clay, or both, tend to be cohesive and resist 
entrainment due mainly to cohesion than friction. Also, 
in fine sediments groups of particles (aggregates) get 
entrained as single units whereas coarse noncohesive 
sediments are moved as individual particles. Thus, the 
amount of entrainment is related to the magnitude of 
total shear stress as expressed in Eq.  (8) rather than to a 
“critical” shear stress. Finally, the rate of sediment 
deposition d in Eq.  (6) is not only the deposition of the 
particular sediment per unit of area and per unit of time, 
but it also represents the rate at which the column of 
suspension loses solids per unit of time, and is 
expressed as (Einstein, 1968): 
 

(9) 

 
where p is a coefficient that depends on the sediment 
and fluid properties, set to 0.5 in the present study based 
on Davis (1978), c(x,t) is the plane sediment 
concentration in transport (kg/m3), and Vs is the particle 
fall velocity (m/s) computed by Rubey’s equation: 
 

 

(10) 

 
and, 

 
 

(11) 

 
where s is the specific weight of sediment (N/m3),  is 
the kinematic viscosity of water (m²/s), ds is the mean 
diameter of the sediment (m), and g is the acceleration 
of gravity (m/s2). 
 
Channel flow  

The concentrated flow in the channels is also described 
by continuity and momentum equations. The 
momentum equation can be reduced to the discharge 
equation with the kinematic wave approximation as: 
 

1m
HQ AR    (12) 

where Q is the discharge (m3/s), and A is the cross-
sectional area of flow (m2). The continuity equation for 
the channel flow is given by: 
 

Aq
x
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t
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                            (13) 

 
where qA is the lateral inflow per unit length of channel. 
Equations 12–13 enable the calculation of channel 
flow. 

Since the effect of rainfall impact is negligible in the 
channel, the continuity equation for the sediment is 
expressed without the rainfall impact component by: 

 

s r c
AC CQ

q +e d
t x

 
  

 
 (14) 

 
where C(x,t) is the sediment concentration in transport 
in the channel (kg/m²), qs is the lateral sediment inflow 
into the channel (kg/m/s), dc is the rate of sediment 
deposition in the channel (kg/m/s), and er is the erosion 
rate of the channel bed material (kg/m/s). The 
components of the net sediment flux for the channel 
segment are given as follows: the erosion rate of the 
channel bed material er is obtained from a general 
equation, initially developed for bed-load transport 
capacity (Croley II, 1982; Foster, 1982): 
 

 1.5  r ce =a  (15) 

 
where a is the sediment erodibility parameter, and c is 
the critical shear stress for sediment entrainment (N/m2), 
which is given by c = (s – )ds, where  is a 
coefficient, set to 0.047 in the present study, s is the 
specific weight of sediment (N/m3), and ds is the mean 
diameter of sediments (m). 

The rate of sediment deposition within the channel dc 
(kg/m/s) in equation (14) is expressed by (Mehta, 1983): 

 
c c W sd = T V C  (16) 

 
where c is the deposition parameter for channels, 
considered as unity in the present case based on the 
study of Einstein (1968), and TW  is the top width of the 
channel flow (m). 

From equation (14), sediment transport rate (CQ) can 
be calculated for the overland flow with A and Q 
obtained from Eq. (13). 
 

REPULSIVE PARTICLE SWARM 

The Repulsive Particle Swarm (RPS) proposed by 
Urfalioglu (2004) is a method of optimization that is a 
variant of the particle swarm optimization (PSO) 
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(Santos et al., 2010). It is particularly effective in 
finding out the global optimum in very complex search 
spaces; although, it may be slower on certain types of 
optimization problems. 

The particle swarm optimization (PSO) was 
invented by Eberhart & Kennedy (1995) inspired by 
simulating the behavior of birds. This method is an 
instance of a successful application of the philosophy of 
bounded rationality and decentralized decision-making 
to solve the global optimization problems (Simon, 
1982). It is observed that a swarm of birds or insects or 
a school of fish searches for food, protection, etc. in a 
very typical manner. If one of the members of the 
swarm sees a desirable path to go, the rest of the swarm 
will follow quickly.  

Every member of the swarm searches for the best in 
its locality and learns from its own experience. 
Additionally, each member learns from the others, 
especially from the best performer among them. Even 
human beings show a tendency to learn from their own 
experience, their immediate neighbors and the ideal 
performers. The particle swarm method of optimization 
mimics the said behavior. Every individual of the 
swarm is considered as a particle in a multidimensional 
space that has a position and a velocity. The particles fly 
through hyperspace and remember the best position that 
they have seen. Members of a swarm communicate the 
good positions to each other and adjust their own 
position and velocity based on these good positions. 
There are two main ways this communication is done: 
(i) “swarm best” that is known to all, (ii) “local bests” 
are known in neighbourhoods of particles. Updating the 
position and velocity is done at each iteration as 
follows: 

 
             vi+1 = vi + c1r1( ix̂  – xi) + c2r2( gix̂  – xi)        (17) 

 
                           xi+1 = xi + vi+1                            (18) 

 
where x is the position and v is the velocity of the 
individual particle, the subscripts i and i + 1 stand for 
the recent and the next (future) iterations, respectively; 
w is the inertial constant, good values are usually 
slightly less than 1; c1 and c2 are constants that say how 
much the particle is directed towards good positions, 
Good values are usually right around 1. Further, r1 and 
r2 are random values in the range [0, 1], ix̂  is the best 

that the particle has attained in the past, gx̂  is the global 

best seen by the swarm. This can be replaced by Lx̂ , the 
local best, if neighborhoods are being used. 

The traditional RPS gives little scope of local search 
to the particles. They are guided by their past experience 
and the communication received from the others in the 
swarm. We have modified the traditional RPS method 
by endowing stronger (wider) local search ability to 
each particle. Each particle flies in its local surrounding 

and searches for a better solution. The domain of its 
search is controlled by a new parameter (nstep). This 
local search has no preference to gradients in any 
direction and closely resembles tunnelling. This added 
exploration capability of the particles brings the RPS 
method closer to what is observed in real life. However, 
in some cases, a moderately wide search (e.g. nstep = 9) 
works better. It has been said that each particle learns 
from its “chosen” inmates in the swarm. Now, at the one 
extreme is to learn from the best performer in the entire 
swarm.  

This is how the particles in the original PS method 
learn. However, such learning is not natural. It is neither 
expected nor even feasible that an individual knows of 
the best performer in the population and interacts with 
all others in the swarm, and therefore relies only on the 
possibility of a limited interaction and limited 
knowledge that any individual can possess and acquire. 
Then, our particles do not know the “best” in the swarm. 
Nevertheless, they interact with some chosen inmates 
that belong to the swarm. Now, the issue is: how does 
the particle choose its inmates? One of the possibilities 
is that it chooses the inmates nearer to it. But, since our 
particle explores the locality by itself, it is likely that it 
would not benefit much from the inmates closer to it. 
Other relevant topologies are (the celebrated) ring 
topology, ring topology hybridized with random 
topology, star topology, von Neumann topology, etc. 

Let us visualize the possibilities of choosing (a 
predetermined number of) inmates randomly from 
among the members of the swarm. This is much closer 
to reality in the human world. When we are exposed to 
the mass media, we experience this. Alternatively, we 
may visualize our particles visiting a public place, (e.g. 
railway platform, church, etc.) where it (he) meets 
people coming from different places. Here, geographical 
distance of an individual from the others is not 
important. Important is how the experiences of others 
are communicated to us. There are large many sources 
of such information, each one being selective in what it 
broadcasts and each of us selective in what we attend to 
and, therefore, receive. This selectiveness at both ends 
transcends the geographical boundaries and each one of 
us is practically exposed to randomized information. Of 
course, two individuals may have a few common 
sources of information. 

We have used these arguments in the scheme of 
dissemination of others’ experiences to each individual 
particle. Presently, we have assumed that each particle 
chooses a pre-assigned number of inmates (randomly) 
from among the members of the swarm. However, this 
number may be randomized to lie between two pre-
assigned limits. 

 
Calibration and simulations 

In the WESP model, the catchment is represented as a 
cascade of planes and channels. Among the various 



Santos, Freire, Silva, Arruda and Mishra 

 

96 

parameters involved in the plane and channel processes, 
the values of some are known, some are adopted a 
priori, and the rest are determined by calibration. Santos 
et al. (2005) used a representation of 10 elements made 
up of seven planes and three channels for the selected 
micro-catchment in the Sumé Experimental Basin. 

The parameters which are fixed a priori are the 
Manning friction factor, which was assumed as 0.02 for 
planes and 0.03 for channels based on the soil type, its 
grain size composition and surface characteristics, the 
specific weight of water (9.8 kN/m³), and the specific 
weight of sediment (2.6 × 104 N/m³). However, there are 
some parameters that are specific for this area which 
should be determined by field tests such as the saturated 
soil hydraulic conductivity Ks whose average value was 
set equal to 5.0 mm/h and the mean diameter of 
sediments ds whose value was assumed to be equal to 
d50 (0.5 mm). The other parameter values should be 
based either on the literature or determined by 
calibration with an optimization process. 

The moisture-tension parameter Ns in Eq. 2 was 
calibrated by a simple trial-and-error method, since it is 
the only parameter which controls the runoff process. 
However, there are three parameters in the WESP 
model to be determined by optimization (a, Kr and KI). 
Theses parameters are related to the erosion process, so 
the optimization had to be done according to the 
adjustment of calculated and observed sediment yield 
data. Since there are no universally applicable values for 
these three erosion parameters, they were optimized 
using the RPS method using the following objective 
function: 

o

co

E

EE
J


                          (19) 

where J is objective function, Eo is observed sediment 
yield (kg/ha) and Ec is calculated sediment yield 
(kg/ha). 
 

Study area and micro-catchment discretization 

The studied micro-catchment (MCN3) is located in the 
sub-catchment Umburana (10.7 km² area) and inserted 
in Sumé Experimental Basin, 137.4 km² area (Fig. 1). 
The climate of the region is typically semiarid with 
irregular rainfall and a mean annual precipitation of 590 
mm. The soil cover is relatively thin underlain by the 
bed rock. The predominant soil is brown non calcic-
vertic occurring in more than 85% of the basin area 
(Srinivasan & Galvão, 1995).  

The field installations consist of four micro-
catchments varying in area from 0.48 to 1.07 ha, with 
all of them designed to permit the measurement of total 
surface runoff and erosion losses from the area. Two of 
the micro-catchments are maintained with natural 
undisturbed vegetation. 

 

 
Fig. 1 Location of the micro-catchment MCN3 in Umburana 

catchment and Sumé Experimental Basin. 
 
The other two were completely cleared and are 
maintained with bare soil surface. A detailed description 
of the procedure for obtaining data and the field 
measurements has been provided elsewhere (Cadier et 
al., 1983; Srinivasan et al., 1988).  

In this study, it was used the micro-catchment 
number 3 (MCN3). The MCN3 has an area of 0.52 ha, 
perimeter of 302 m, mean slope 7.1%, and bare soil. In 
the case of micro-catchment, the runoff hydrograph and 
the total soil loss could be obtained. Table 1 and Figs 
2−3 present the different divisions of the MCN3 in 
planes and channels elements. The MCN3 was 
represented in three ways of discretization with 4, 10 
and 23 elements.  

The relative efficiency of the model was assessed by 
the widely-used Nash-Sutcliffe R² efficiency index 
(Nash & Sutcliffe, 1970) and the mean relative error 
(Elshorbagy et al., 2000). For the purpose of this study, 
the MRE is defined as the average of the absolute values 
of the errors between the estimated and the observed 
sediment yield expressed as fractions of the 
corresponding observed sediment yield. Although the 
WESP model in each test with each optimization 
method is calibrated for obtaining the best performance 
over the calibration period, the relative efficiencies of 
the optimization method is determined on the basis of 
their corresponding performances in verification and on 
the degree of variability of the parameter values in 
successive tests. 
 
APPLICATION AND RESULTS  

Setting of the RPS parameters 

The RPS method of optimization contains some 
probabilistic and deterministic components which are 
controlled by some algorithmic parameters. For the 
method to perform optimally, these parameters must 
be chosen carefully. The following set of parameters 
was used in the present work: (N = 100, NN = 40, MX 
= 100, NSTEP = 15, ITRN = 1, NSIGMA = 1, ITOP = 
3), in which N is the population size. In most of the  
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Table 1. Different discretizations of the MCN3 in plane and channel 
elements 

Discretization n1 
Element Area (m²) Length (m) Width (m) Slope 

1 2 169 41.20 52.64 0.085 
2 1 573 30.00 52.43 0.090 
3 1 458 35.00 41.66 0.105 
4 – 16.53 – 0.050 

Discretization n2 
Element Area (m²) Length (m) Width (m) Slope 

1 2 166.66 41.18 52.60 0.0896 
2   349.12 34.87 10.02 0.0936 
3   434.45 34.67 12.52 0.0998 
4 – 23.04 – 0.0554 
5   931.36 41.33 22.54 0.0806 
6   447.00 35.67 12.52 0.0903 
7 – 23.04 – 0.0466 
8   278.85 27.85 10.02 0.0791 
9   592.56 39.43 15.03 0.0878 

10 – 16.53 – 0.0665 
Discretization n3 

Element Area (m²) Length (m) Width (m) Slope 
1 262.00 10.0 26.2 0.080 
2 225.00 7.5 30.0 0.080 
3 662.20 22.0 30.1 0.057 
4 – 46.0 – 0.078 
5 162.50 6.5 25.0 0.030 
6 325.00 13.0 25.0 0.028 
7 – 35.0 – 0.085 
8 182.00 26.0 7.0 0.076 
9 – 5.0 – 0.080 

10 302.50 11.0 27.5 0.090 
11 180.00 8.0 22.5 0.063 
12 – 27.5 – 0.073 
13 463.75 26.5 17.5 0.091 
14 235.50 15.0 15.7 0.133 
15 206.72 13.6 15.2 0.059 
16 219.80 14.0 15.7 0.143 
17 – 15.7 – 0.060 
18 508.80 24.0 21.2 0.071 
19 612.50 25.0 24.5 0.080 
20 – 24.5 – 0.049 
21 223.86 12.3 18.2 0.090 
22 378.00 16.8 2.5 0.085 
23 – 20.0 – 0.04 

 
cases N = 30 works well but its value may be increased to 
50 or 100. 

The parameter NN is the size of randomly chosen 
neighbors, which ranges from 15 to 25 (but sufficiently 
less than N) is a good choice. The parameter MX is the 
maximal size of decision variables. In f(x1, x2,..., xm), m' 
should be less than or equal to MX. The parameter ITRN 
is the number of iterations. It may depend on the 
problem. Commonly, the range from 200 (at least) to 
500 iterations may be good enough. But for functions 
like Rosenbrock or Griewank of large size (say m' = 30) 

it is needed that ITRN is large, say 5000 or even 10 000.  
Exceptionally, the ITRN was set to 1 in order to gain in 
time execution and the results were satisfactory enough. 
ITOP less than or equal to 1 means a ring topology, 
ITOP equal to 2 means a ring and random topology, and 
ITOP larger than or equal to 3 means a random 
topology. If NSIGMA is equal to 0, it means no chaotic 
perturbation, and when it is equal to 1 means chaotic 
perturbation. In certain cases the one or the other 
specification works better. Different specifications of 
parameters may suit different types of functions or 
dimensions – one has to do some trial and error. 
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Fig. 2 Different divisions of the MCN3 in plane and channel 
elements: (a) 4 elements and (b) 10 elements. 
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Fig. 3 Divisions of the MCN3 in planes and channels with 23 

elements. 

Application of the WESP model 

The Sumé Experimental Basin became operative in 
1982 and since then more than 200 events of 
precipitation resulting in surface runoff have been 
documented. This number is large enough for a 
sediment yield analysis, however the events 
producing very small runoff are far too numerous 
than events that resulted in significant runoff and 
erosion losses, in addition, the range of observation is 
not uniform.  

The trend and the comparative aspects for 
catchment, however, seem to be quite well 
established and hence the situation seems to be 
appropriate for testing and verification of suitable 
models (Santos et al., 2011). 

For the MCN3, 44 precipitation events that occurred 
between 1987 and 1991 were individually calibrated for 
erosion. For all the events, the starting values of the 
three parameters (a, Kr and KI) were the same, and the 
maximum, minimum and mean values obtained are 
shown in Table 2. Only three events (204, 206 and 217) 
had their values of hydraulic conductivity (Ks) changed 
to respectively 2, 1 and 1mm/h, in order to obtain a 
calculated runoff event. 

The range in which these parameters may vary was 
chosen as follows: a (0.0001–0.1 kg/m²), Kr (0.1–10.0 
kg·m/N1.5·s), and KI (0.1 × 108–10.0 × 108 kg/s/m4). 
Table 2 shows the statistical analysis for the three 
parameters as a result of WESP model calibration 
with the RPS method optimization. It has been 
observed that the rainfall impact erosion parameter KI is 

relatively insensitive with very high values and can be 
conveniently fixed at a single value, as also observed by 
Srinivasan et al. (2003). Its standard deviation were 
more significant, ranging from 2.59 (n2) to 2.62 (n3). 

In the case of the other erosion parameter Kr, the 
variation also can be considered fairly small, with an 
average value of 1.69 (n1), 1.78 (n2) and 2.10 
kg·m/N1.5·s¹ (n3) (Table 2). This parameter applies 
only to erosion on planes, and is a fairly sensitive 
one. It has been observed that this soil erodibility 
parameter is affected by antecedent soil moisture 
conditions and other physical factors such as the 
slope (Srinivasan et al., 2003). Hence, it is unlikely 
that this parameter can be regionally represented by a 
single value. However, if this parameter can be 
adequately correlated to such local physical factors as 
slope, length of ramp, and perhaps, a soil moisture 
index, it should be possible to obtain applicable 
values for this parameter, within a homogenous 
hydrological region. 

About the channel erosion parameter a, it showed 
only a very small variation in its range, and would be 
dependent essentially on the type of soil in the 
catchment. Its average value was 0.0985 kg/m²; some 
additional data, from other catchments, would be 
necessary to confirm whether this can serve as a 
regional value. 

It can be seen that with the discretization n2, the 
results showed fewer events with calculated values 
overestimated or underestimated. A better event 
calibration is also possible when the discretization is 
refined, which is the case of n3. However, a very 
detailed discretization may unnecessarily increase the 
modeling uncertainty. 

Figure 4 shows the relationship between observed 
and calculated sediment yield using RPS algorithm 
for the three ways of discretization of MCN3: (a) 4 
elements, (b) 10 elements, and (c) 23 elements. In 
Fig. 4a, it is observed that there were overestimation 
for sediment yield in nine events. 
 
Table 2. Maximum, average, minimum, standard deviation and 

mean deviation parameters a, Kr and KI. using RPS 
method of optimization 

 Max. Average Min. SD¹ MD² 
Discretization n1 

a 0.0954 0.0098 0.0003 0.0215 0,0128 
Kr 2.93 1.69 1.00 0.65 0,59 
KI 9.87 4.53 0.18 2.87 2,50 

Discretization n2 
a 0.1000 0.0143 0.0003 0.0251 0,0150 
Kr 2.96 1.78 1.01 0.59 0,51 
KI 9.96 4.74 0.18 2.59 2,11 

Discretization n3 
a 0.1000 0.0347 0.0003 0.0352 0,0285 
Kr 2.97 2.10 1.01 0.58 0,48 
KI 9.27 3.69 0.40 2.62 2,07 

¹ Standard deviation. ² Mean deviation. 
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There was also an underestimation of the 
simulated values for one event, not visible in the 
graph due to its small value compared to most events. 

In general, the pattern of errors indicates global 
overestimation and underestimation compared to the 
regression line. Figure 4b shows that there were less 
overestimation for the simulation of sediment yield, 
when only two events were overestimated. Figure 4c 
shows that, there were less overestimation for the 
calculated sediment yield events, in which only two 
values were overestimated.  
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Fig. 4 Relationship between observed and calculated sediment yield 

using RPS algorithm: (a) discretization n1, (b) discretization n2 
and (c) discretization n3. 

Event 160 was again the only one to have its value 
underestimated. Most simulated values were close to or 
exactly on the equality line, the result of a more 
accurate calibration. Scatter plots of the errors as ratios 
of observed and calculates sediment yield produced by 
RPS method is shown in Fig. 5. 

The reason for the apparent discrepancy in the mean 
relative error values is that the highest sediment yield 
peaks are influenced by the resolution subdivisions of 
the catchment. The mean relative error for each 
simulated event using the average values of the erosion 
parameters into WESP model for the discretizations n2 
and n3 are relatively low, generally resulting in similar 
values for these subdivisions, which was not the case of 
discretization n3. 

Table 3 shows the parameters a, Kr and KI, 
optimized for 34 rainfall events with sediment yields E0 
larger than 100 kg/ha, which are assumed to be more 
accurate than those less than 100 kg. Three parameters 
a, Kr and KI should be constant for all rainfall events 
because they are characterized by sand and soil in the 
test basin. The orders of these optimized parameters for 
all the rainfall events seem to be equal for the 23 
elements division, but for the 4 and 10 elements division 
variations of these values are relatively large. The 
average values of the parameters over the events can 
become the values for the specific test field. That is for 
the 23 elements discretization: a = 0.002 (kg·m²/N1.5·s), 
Kr = 2.03 (kg·m/N1.5·s), KI = 3·98 × 108 (kg·s/m4).  

Figure 6 shows the comparison between observed 
and calculated sediment yield, for the 35 selected events 
with observed sediment yield larger than 100 kg/ha. 
Simulation is done with the average values of a, Kr and 
KI for each way of discretization. The calculated values 
for sediment yield seem to be the same as the observed 
ones in several events, except for events 152, 177, 179, 
187, 198, 229, 239, 246 and 254. There are small 
differences of calculated values when comparing the 
three ways of basin division, although the 23 elements 
division seems to give the best results. 
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Fig. 5 Scatter plots of errors as ratios of observed sediment yield and 

mean relative error for the three discretizations in MCN3. 
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Table 3. Optimized values of parameters with data of Eo > 100 kg 

a (kg·m²/N1.5.s) Kr (kg·m/N1.5·s) KI × 108 (kg·s/m4) 
Discretization Event Eo 

n1 n2 n3 n1 n2 n3 n1 n2 n3 
152 1218.88 0.0003 0.0004 0.0014 1.14 1.10 1.56 3.46 3.59 3.27 
155 2335.62 0.0334 0.0264 0.0592 1.67 2.50 2.24 8.44 0.48 4.10 
159 323.43 0.0041 0.0056 0.0127 2.25 1.65 2.35 2.46 8.39 4.50 
161 5430.19 0.0161 0.0129 0.0294 1.25 2.59 1.01 9.87 2.20 4.03 
162 3965.12 0.0104 0.0127 0.0260 1.57 1.56 2.54 6.62 6.60 3.14 
165 1093.25 0.0238 0.0208 0.0505 2.90 1.02 2.38 6.91 1.85 9.00 
167 1924.58 0.0062 0.0065 0.0163 2.26 2.18 2.84 2.39 5.82 4.37 
168 1099.05 0.0029 0.0054 0.0130 2.09 1.39 2.36 3.74 4.95 5.34 
172 3606.79 0.0025 0.0115 0.0256 2.54 1.69 1.07 5.92 1.50 7.53 
174 1115.53 0.0176 0.0149 0.0316 1.35 2.63 2.94 7.33 7.57 4.40 
177 7728.92 0.0005 0.0017 0.0129 1.10 1.25 2.06 0.18 7.23 3.52 
178 6952.69 0.0003 0.0065 0.0203 1.14 2.07 2.85 3.46 6.37 3.95 
179 2474.33 0.0007 0.0003 0.0089 1.00 1.92 2.45 0.75 5.92 9.27 
183 6739.52 0.0017 0.0129 0.0273 2.76 1.60 1.48 3.22 0.81 6.30 
184 849.51 0.0105 0.0109 0.0227 2.14 1.42 1.93 8.89 9.96 2.33 
186 1706.52 0.0037 0.0033 0.0114 1.12 2.96 1.96 9.33 7.96 1.61 
187 1727.83 0.0003 0.0019 0.0068 1.14 1.68 2.79 3.46 4.18 4.14 
191 160.70 0.0328 0.0436 0.1000 1.16 1.38 2.34 7.65 6.08 0.40 
197 1766.35 0.0005 0.0028 0.0087 1.10 1.76 1.38 0.18 3.41 5.66 
198 5146.97 0.0007 0.0011 0.0061 1.00 1.28 2.97 0.75 3.05 5.72 
200 1014.43 0.0954 0.0990 0.1000 1.42 1.69 2.34 7.63 6.13 0.40 
204 1036.24 0.0009 0.0042 0.0103 2.25 1.21 1.54 5.56 7.27 0.67 
206 366.70 0.0003 0.0025 0.0069 1.14 1.33 2.77 3.46 6.35 4.06 
210 1296.56 0.0017 0.0065 0.0170 2.03 2.92 1.33 2.89 5.38 6.72 
216 322.45 0.0195 0.0163 0.0427 2.68 2.84 1.68 4.94 4.37 5.53 
217 551.38 0.0057 0.0061 0.0185 2.45 2.27 1.87 2.35 9.20 2.63 
228 789.09 0.0008 0.0017 0.0076 1.06 2.65 1.98 8.10 4.28 1.94 
229 1016.71 0.0005 0.0003 0.0022 1.10 1.14 1.22 0.18 3.46 6.85 
239 777.61 0.0004 0.0017 0.0058 1.10 1.25 2.32 2.20 7.23 2.44 
246 512.77 0.0005 0.0005 0.0003 1.10 1.10 1.14 0.18 0.18 3.46 
253 2776.25 0.0003 0.0021 0.0088 1.14 1.49 1.07 3.46 5.05 2.02 
254 304.58 0.0325 0.0371 0.1000 2.93 1.01 2.34 2.19 4.33 0.40 
263 104.62 0.0080 0.0088 0.0309 2.80 1.07 2.83 6.36 4.32 2.99 
264 472.19 0.0003 0.0016 0.0053 1.14 2.03 1.22 3.46 9.65 2.65 

Average 1083.27 0.0100 0.0100 0.0200 1.68 1.75 2.03 4.35 5.15 3.98 

 
 

The calculated values for sediment yield seem to be 
the same as the observed ones in several events, except 
for events 152, 177, 179, 187, 198, 229, 246, and 253. 
There are small differences of calculated values when 
comparing the three ways of basin division, although the 
23 elements division seems to give the best results. 

In order to differentiate further in deciding on the 
suitability of the three remaining discretizations (4, 10 
and 23 elements), the Table 4 shows the variation of the 
observed and calculated sediment yield in 34 
optimization runs of the WESP model using 
optimization method. It may be observed that for the 
Discretization with 23 elements, the variations of the 
statistical values in successive tests are small in 

comparison to the other discretizations and the values of 
are generally the lowest. This indicates that the 
discretization with little number of elements not 
produce similar efficiency values for calculated 
sediment yield like the discretization with considerable 
number of elements. 

 
Table 4. Comparative assessment between observed and calculated 

sediment yield in 34 optimization runs of the WESP 
model using optimization method 

Discretization EMR R² RMSE MSE 
n1 -76.45 0.69 51.80 57.27 
n2 18.84 0.90 19.21 7.88 
n3 4.88 0.99 7.64 1.25 



Santos, Freire, Silva, Arruda and Mishra 

Journal of Urban and Environmental Engineering (JUEE), v.5, n.2, p.91-102, 2011 

101 

 
Fig. 6 Observed and calculated sediment yield with data Eo > 100 kg/ha. 

 
CONCLUSION 

In order to compare the influence of the basin 
discretion on the runoff-erosion simulation, the 
Repulsive Particle Swarm (RPS), which is a population 
based stochastic optimization technique, inspired by 
social behavior of bird flocking or fish schooling, was 
applied to a physically-based runoff-erosion model 
named WESP. The results show that though optimized 
parameter values are different according to the 
discretization, they are within the range of acceptance. 
Although, the 23 elements discretization shows the best 
results, 10 elements discretization seems also to give an 
acceptable simulation performance. 
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