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Abstract: In this study the performance of ANN with feed-forward neural network (FFNN) 

algorithm evaluated rainfall-runoff modeling in five gauging stations in Florida State. 
In addition, for investigating the performance of ANN in multi-station discharge 
prediction, self-organizing map (SOM) clustering tool employed in order to cluster the 
input data with similar patterns, due to the large amount of records in multiple stations. 
The main aim of study is to investigate capability and accuracy of ANN based methods 
in multi-station discharge prediction. In order to consider multiple stations effect on 
watershed outlet discharge, different combinations for precipitation and discharge data 
of all stations with antecedent values over the watershed have been taken into account. 
In this way, application of the representatives from each cluster led to significantly 
reduction in the numbers of the input variables so that the optimal ANN structure could 
be proposed. Therefore, ANN as a data-driven model was trained to predict daily runoff 
for the Peace River basin via recorded values from July 1995 to July 2011. Three 
scenarios conducted the aim of research; first scenario was an integrated ANN model 
trained by the data of rainfall and runoff at multiple stations. The second scenario was a 
sequential ANN model processed with upstream discharge records in addition to 
rainfall data as inputs and downstream discharge values as target. Finally, third 
scenario was a SOM-ANN model, in which rainfall and runoff data were clustered 
according the homogeneity of data via (SOM). The center of each cluster as the 
dominant component of each cluster was imposed to ANN in order to present an 
optimal rainfall-runoff model over the watershed. In all scenarios, different data sets at 
various time lags in both rainfall and stream flow data were applied as inputs in ANN-
based model to predict stream flow. Results show that ANN model coupled with SOM 
is useful tools for forecasting multi-station discharge and precipitation event response 
in the watershed. Furthermore, the comparison of scenarios leads to select the most 
efficient and optimal inputs to ANN which subsequently, presents the optimal multi-
station rainfall-runoff model over the watershed. 
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INTRODUCTION  
 
In recent decades, especially since the second half of the 
20th century, when the effect of the environmental 
destruction started to become more obvious, great 
efforts have been made towards the environmental 
modeling. Although there is a plethora of definitions 
about the term modeling in the environmental and 
hydrological literature, all of definitions have one thing 
in common, the simplifying. A model is a simplified 
representation of a complex system (Clarke, 1973), so, 
the definition also includes hydrological models (i.e., 
models of hydrological systems)  such as physical, 
analogue or mathematical. When the system to be 
modeled is very complex, it may be adequate for many 
purposes to adopt some relatively simple form of the 
system but this simplification should not affect the way 
the whole system treats. In this way, accurate modeling 
of the rainfall-runoff process as one of the most 
considerable elements of environment and hydrological 
models came into the point of interest in recent years.  

Therefore various models have been developed in 
order to simulate the rainfall-runoff process. Classic 
time series models such as auto regressive integrated 
moving average (ARIMA), seasonal ARIMA, ARIMA 
with exogenous input (ARIMAX) and multiple linear 
regression (MLR), are widely applied to forecast 
hydrological time series (e.g. Adamowski et al., 2012; 
Cleaveland and Stahle, 1989; Graumlich, 1987; Hansen 
and Nelson, 1997; Nourani et al., 2011a; Pulido-Calvo 
and Portela, 2007; Salas et al., 1980). These models are 
basically linear and assume stationary of the dataset. 
Thus, when it comes to model a complex and non-linear 
phenomena such rainfall-runoff, some deficiencies are 
exposed.  

In this regard, new generation of hydroinformatic 
models with capability of nonlinearity modeling which 
employ new methods and algorithms of forecasting 
model came to existence. Although linear models may 
sometimes be inaccurate because of their inability to 
handle non-stationarity and non-linearity, such 
conventional methods are still used both in practice 
because they are simple to use, and because they can be 
used as ‘comparison models’ to evaluate newer 
methods.  

Nonlinearity and natural uncertainty of stochastic 
processes such as rainfall and runoff, the need for long-
term historical records, and the complexity of physical-
based methods are the reasons that researchers have 
attempted to develop black box models such as 
Artificial Neural Network (ANN). ANN has the ability 
to recognize and identify relationships and patterns from 
the given data so that solve complex hydrologic 
problems by handling large amounts of dynamicity, 
non-linearity of noisy data. This makes black box 
models well suited to time series modeling problems 

with a data-driven nature. To be specific, black-box 
modeling properties, makes it independent to have 
preliminary perception about the details of the whole 
process, which in hydrological issues is the physical 
situation of a watershed. Besides, ANN as a progressive 
type of black box models can process multiple inputs 
that are totally differs from each other in characteristics, 
thus, can represent the time–space variability.  

ANN, as a self-learning and self-adaptive 
approximating function, has great capabilities in 
modeling and forecasting nonlinear and non-stationary 
hydrological time series. This modeling have been a 
topic of interest for many researchers in past two 
decades and been widely used for hydrological 
processes modeling such as Rainfall-Runoff, e.g., Tokar 
& Johnson (1999), Sudheer et al. (2000), Kumar et al. 
(2004), Nourani et al. (2011a; 2011b). A comprehensive 
review of ANN application on hydrological models in 
general and on rainfall-runoff models in particular has 
been presented by ASCE task Committee (2000) and 
Abrahart et al. (2012). Study on discharge forecasting 
have shown that ANN is superior to classic regression 
techniques and time series models including ARIMA 
(Abrahart & See, 2000) because linear nature of 
conventional models assume discharge data are 
stationary, so have a limited ability to capture non-
stationarities and non-linearities in discharge data. 

With all the improvements achieved by ANN 
modeling for rainfall-runoff process at the outlet of a 
watershed in broad range of time scale (i.e., daily, 
monthly, yearly, etc.), a few studies have addressed the 
flow estimation at the multiple gauging stations within a 
watershed. Mutlu et al. (2008) employed two different 
neural network models, the multilayer perceptron and 
the radial basis neural network to predict stream flow at 
four gauging stations using antecedents of flow and 
precipitation in the Eucha watershed in north-west 
Arkansas and north-east Oklahoma. In their proposed 
models, the MLP model performed better for 
forecasting daily flow at multiple gauging stations in the 
watershed. Turan & Yurdusev (2009) used feed forward 
back propagation algorithm (FFBP), generalized 
regression neural networks and fuzzy logic for the 
estimation of the river flows at one location from the 
upstream flow records in the case of Birs River in 
Switzerland. Their work focused on estimating 
downstream daily mean discharge values at the outlet of 
watershed from three records of upstream daily mean 
discharge. The results demonstrated that all the methods 
considered were capable of yielding satisfactory 
outputs. However, FFBP algorithm was selected over 
the other models because of higher performance. 

Considering the spatio-temporal distribution of 
hydrologic processes data, pre-processing of data can 
improve the efficiency of data-driven methods such as 
ANN. Clustering is one suggested method to conduct 
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spatio-temporal pre-processing of data. In the context of 
ANN-based rainfall-runoff modeling, clustering is 
usually performed for classification of data, stations or 
zones into homogeneous classes (Nourani et al., 2013), 
and/or for optimization of the model structure by 
selecting dominant and relevant inputs (Bowden et al., 
2005). Clustering techniques identify structure in an 
unlabeled data set by objectively arranging data into 
homogeneous groups, where the within-group-object 
dissimilarity is minimized, and the between-group-
object dissimilarity is maximized. Conventional 
clustering methods, such as K-mean, that proceed 
according to linear characteristics require the number of 
clusters to be specified in advance (Hsu & Li, 2010).  

In this study the performance of ANN with feed-
forward neural network (FFNN) algorithm evaluated 
rainfall-runoff modeling in five gauging stations in 
Florida State in order to predict outlet station discharge. 
Moreover a pre-processing technique was conducted 
through self-organizing map (SOM) in order to decrease 
the input variables of ANN and obtain accurate results. 
In this light, the capability of integrated ANN and 
SOM-ANN methods in multi-station discharge 
prediction was compared through different 
combinations of input variables. In the next section of 
the book chapter, the concepts of forecasting and 
clustering methods (i.e., ANN and SOM, respectively) 
are reviewed. The following section describes the study 
area and data sources, proposed methodology as well as 
the evaluation criteria. The obtained results are then 
presented and discussed, and ultimately followed by 
some concluding remarks. 

 
MATERIAL AND METHODS  

 

Artificial Neural Network (ANN) 

ANN models are often applied in nonlinear data 
series and results to precise outcomes, especially for 
complex Phenomenon such as rainfall-runoff that 
physics of involved variables are not completely 
comprehended. In this study, different combinations of 
input data series applied to ANN model in order to 
evaluate the efficiency of the ANN to predict multi 
station discharges. 

ANN as a data driven method inspired by the way 
biological nervous systems, such as the brain, process 
information. The key element for this type of data 
processing is the novel structure of the information 
processing system. It is composed of a large number of 
highly interconnected processing elements (neurons or 
nodes) working in unison to solve specific problems. 
ANNs, like people, learn by example. Since ANN is a 
supervised learning algorithm, it requires target values 
in order to adopt the way of learning process. This 
typically implies that a large number of input and output 

data which considered as examples are required for the 
iterative process of supervised learning. 

 ANN is configured for a specific application, such 
as pattern recognition or data classification, through a 
learning process. Among the applied neural networks, 
the FFNN with a back-propagation (BP) training 
algorithm is the most common method in solving 
various engineering problems. In the feed-forward 
phase, the external input information at the input nodes 
is propagated forward to compute the output 
information signal at the output unit, and in the 
backward phase modifications to the connection 
strengths are made based on the differences between the 
computed and observed information signals at the 
output units (Rumelhart et al., 1986). In any FFNN-
based modeling, there are two important points to which 
attention must be paid: firstly, the architecture, i.e., the 
number of neurons in the input and hidden layers, and 
secondly, the training iteration (epoch) number. The 
Number of neurons in the input layer depends directly 
to the number of input variables and the number of 
neurons in the hidden layer is the result of trial and error 
process starting with a few neurons as initial values and 
by proceeding the process optimal ANN structure with 
the number of hidden neurons and epoch number will be 
determined. Appropriate selection of these two 
parameters improves model efficiency in both the 
training and testing steps. Furthermore, a high epoch 
number and poor quality or quantity of data could cause 
the network to over fit during the training step. If this 
occurs, the model cannot adequately generalize new 
data outside of the training set. 

 FFNNs allow signals to travel one way only; from 
input to output. There is no feedback (loops) i.e. the 
output of any layer does not affect that same layer. 
FFNNs tend to be straight forward networks that 
associate inputs with outputs. The term feed forward 
means that a neuron connection only exists from a 
neuron in the input layer to other neurons in the hidden 
layer or from a neuron in the hidden layer to neurons in 
the output layer and the neurons within a layer are not 
interconnected to each other. The explicit expression for 
an output value of a three-layered FFNN is given by 
(Kim & Valdes, 2003): 

1 1

ˆ .
N NM N

k o kj h ji i jo ko
j i

y f w f w x w w
 

  
    

  
     (1)

 
where wji is a weight in the hidden layer connecting the 
i-th neuron in the input layer and the j-th neuron in the 
hidden layer, wjo is the bias for the j-th hidden neuron, fh 
is the activation function of the hidden neuron, wkj is a 
weight in the output layer connecting the j-th neuron in 
the hidden layer and the k-th neuron in the output layer, 
wko is the bias for the k-th output neuron, fo is the 
activation function for the output neuron, xi is ith input 
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variable for input layer and Ŷk is computed output 
variable. NN and MN are the number of the neurons in 
the input and hidden layers, respectively. The weights 
are different in the hidden and output layers, and their 
values can be changed during the process of the network 
training. 

In order to train a neural network to perform some 
task, the weights of each unit must be adjusted in such a 
way that the error between the desired output and the 
actual output is reduced. This process requires that the 
neural network compute the error derivative of the 
weights (EW). In other words, it must calculate how the 
error changes as each weight is increased or decreased 
slightly. The BP algorithm is the most widely used 
method for determining the EW. 

The FFNN technique consists of layers of parallel 
processing elements called neurons, with each layer 
being fully connected to the preceding layer by 
interconnection strengths, or weights. It has proved that 
a FFBP model with three layers is satisfactory for the 
forecasting and simulating as a general approximator 
(Hornik et al, 1989). Thus, a three-layer ANN with 
FFBP algorithm trained by the Levenberg-Marquardt 
optimization method was chosen for this study (Haykin, 
1994).  

Initial estimated weight values are progressively 
corrected during a training process that compares 
predicted outputs with known outputs. Learning of these 
ANNs is generally accomplished by BP algorithm. The 
objective of the BP algorithm is to find the optimal 
weights, which would generate an output vector Y= (y1, 
y2,…, yp), as close as possible to the target values of the 
output vector T=(t1, t2,…, tp), with the selected accuracy. 
The optimal weights are found by minimizing a 
predetermined error function i.e., E in Eq. (2) (ASCE, 
2000): 

 
2)(E i

p p
i ty                           (2) 

 
where yi is the component of an ANN output vector Y, 
ti is the component of a target output vector T, p is 
the number of output neurons and P is the number of 
training patterns. The error between the desired and 
predicted output is propagated backwards through the 
network and the weights connecting the neurons are 
updated in the learning phase via a training algorithm. 
A simple structure is provided in Fig. 1.  

The Tansig and Purelin functions can be utilized 
as transfer functions in the hidden and output layers. 
The Tansig transfer function (hyperbolic Tangent 
sigmoid) is given as Eq. (3) (ASCE, 2000): 
 

1
1

2
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
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Fig. 1 The basic structure of a FFNN. 

 
Self-Organizing Map (SOM) 
 

The SOM is an effective tool for the visual-based 
clustering of high-dimensional data. It implements an 
orderly mapping of a high-dimensional distribution onto 
a regular low-dimensional grid. Therefore, it is able to 
convert complex, nonlinear statistical relationships 
between high-dimensional data items into simple 
geometric relationships on a low-dimensional display 
while preserving the topology structure of the data 
(Kohonen, 1997). SOM reduces dimensions by 
producing a map of usually 1 or 2 dimensions that plots 
the similarities of the data by grouping similar data 
items together.  

Thus, SOMs accomplish two things: they reduce 
dimensions and display similarities. The SOM network 
generally consists of two layers, an input layer and a 
Kohonen or output layer (Fig. 2). The input layer is 
fully connected to the Kohonen layer, which in most 
common applications is two-dimensional. The input 
layer allocates a neuron for each input variable (i.e., 
precipitation, discharge). Once the size of input layer is 
determined, an initialization starts to assign weighs for 
each neuron, then, the training algorithm is employed 
over the inputs, and finally the clustered datasets are 
transferred to Kohonen layer.  

The SOM is trained iteratively, and initially the 
weights are randomly assigned. When the n-
dimensional input vector x is sent through the network, 
the distance between the w, weight neurons of SOM and 
the inputs is computed. The most common criterion to 
compute the distance is Euclidean distance, Eq. (4) 
(Kohonen, 1997): 

 
 

2

1

( )i i
i

n

x w x w


                        (4) 

 
The weight with the closest match to the presented 

input pattern is the winner neuron or the best matching 
unit (BMU). The BMU and its neighboring neurons are 
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allowed to learn by changing the weights at each 
training iteration t, to further reduce the distance 
between the weights and the input vector, Eq. (5) 
(Kohonen, 1997): 

 

        lm1 ( )w t w t t h x w t   
 

 (5) 

       
where α is the learning rate, ranging in [0 1], l and m 
are the positions of the winning neuron and its 
neighboring output nodes, and hlm is the 
neighborhood function. The most commonly used 
neighborhood function is the Gaussian function, Eq. 
(6) (Kohonen, 1997): 
 

2

lm 2
exp( )

2 ( )

l m
h

t


     (6)

 
where hlm the neighborhood is function of the best 
matching neuron l at iteration t; and l-m is the 
distance between neurons l and m on the map grid; 
and σ is the width of the topological neighborhood. 
The training steps are repeated until convergence. 
After the SOM network is constructed, the 
homogeneous regions, or clusters, are defined on the 
map. 

 
Fig. 2 SOM clustering schematic. 

                                                            
 
STUDY AREA AND DATA SOURCE 
 
Study area 
 

The Peace-Tampa bay watershed placed in Peace River 
drainage basin in Florida State was selected for this 
study (Fig. 3). Mentioned watershed connects central 
Florida to the southwest coast and consists of nine sub-
basins covering area of approximately 6,086 km2. 
Agricultural land uses encompass about 80% of the 

 

 
Fig. 3 Peace-Tampa Bay watershed. 
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basin while urban and mining each cover roughly 
10% of the area. The basin contains major portions of 
three physiographic provinces: the Gulf Coastal 
Lowlands, the DeSoto Plain, and the Polk Upland. 
All, or part, of four sand hill ridge provinces are 
contained within the northern end of the basin. The 
basin begins in central Polk County, the Polk 
Uplands, as an internally drained lake region and 
transitions to a poorly drained upland.  

Within the DeSoto Plain of central Hardee and 
northern DeSoto Counties, the basin becomes a 
gently sloping plain with well-developed surface 
drainage features. Downstream of central DeSoto 
County, the basin enters the Gulf Coastal Lowlands 
province where elevations are less than 10 meters and 
the river develops a broad flood plain. 

The climate of the area is generally subtropical 
with an annual average temperature of about 23 
degrees in Celsius. Annual rainfall in or near the 
Peace River drainage basin averages 127 to 142 
centimeters. 

Land surface elevations in the watershed reach 
about 61 meters above sea level near the headwaters 
of the Peace River in Polk County and decline to sea 
level at Charlotte Harbor. Changes in elevation are 
most conspicuous along the ridges and scarps. The 
northwest portions of the Peace River at Bartow 
basin and the City of Lakeland have an average 
elevation of 61 meters NGVD (National Geodetic 
Vertical Datum). Elevations rise to approximately 45 
meters NGVD north of Lake Hancock before 
gradually decreasing again into the Green Swamp. 
The upland elevations decrease from 50 meters 
NGVD near Auburndale in the north to 35 meters 
NGVD near Bartow in the south. 

 
Data sources  
 

Since developed ANN models require discharge and 
precipitation time series for training and testing 
periods, data for discharge derived from the records 
of four USGS discharge gauging stations. Details for 
each station are shown in Table 1. Daily precipitation 
data derived from five NOAA (National Oceanic and 
Atmospheric Administration) rain gauges, 
downloaded from NOAA web site 
(http://www.noaa.gov). Details for each station are 
tabulated in Table 2. 

For first two scenarios, ANN model has been 
trained and tested with two different input 
combinations: 

 
1. Qt

i
-1, Qt

i
-2, It-1, It-2 

2. Qt
i
-1, Qt

i
-2,Qt

i
-3, It-1, It-2, It-3 

 
Qt

i
 is the output variable at station i and t-1, t-2, t-3 

refer to three days of antecedent values. It is notable 

that the selection of three-day lag time was 
performed according to sensitivity analysis between 1 
to 7 days and it is concluded that the effect of lag 
time greater than 3 days was not prominent enough to 
enhance the numbers of ANN inputs, thus, such 
antecedents were ignored. The effect of lag times 
greater than 3 days relevant to downstream stations 
can be considered through discharge values of 
upstream stations, in this way selection of 1, 2 and 3 
days lag might include the effects of most important 
lag patterns in all stations.  

 
Table 1 Discharge Stations’ Properties 

Station 
Number

Station 
Indicator

Station 
ID 

Drainage 
Area (km²) Location 

1 Q1 2294650 1,010  
Lat 27°54′07″ 
Long 81°49′03″

2 Q2 2294898 1,243  
Lat 27°45′04″ 
Long 81°46′56″

3 Q3 2295420 313  Lat 27°37′13″ 
Long 81°49′33"

4 Q4 2295637 2,139  
Lat 27°30′15″ 
Long 81°48′04″

5 Q5 2296500 855  
Lat 27°22′29″ 
Long 81°47′48″

6 Q6 2296750 3,540  
Lat 27°13′14″ 
Long 81°52′35″

 
Table 2 Precipitation Stations’ Properties 

Rain Gauge 
Name 

Station 
indicator 

Station 
ID 

Location 

Mountain 
Lake 

I1 85973 
Lat 27°45′04″ 
Long 81°46′56″ 

Bartow I2 80478 
Lat 27°54′07″ 
Long 81°49′03″ 

Wauchula I3 89401 
Lat 27°30′15″ 
Long 81°48′04″ 

Desoto I4 82288 
Lat 27°22′11″ 
Long 81°30′49″ 

Arcadia I5 80228 Lat 27°13′14″
Long 81°52′35″

 
Evaluation criteria of models 
 

In order to train and test ANN it is necessary to have 
two sets of training data; a calibration set and a 
validation set. Having trained a network with 
calibration data the accuracy of the results obtained 
from that network can be assessed by comparing its 
responses with the validation set. In this study the 
network architecture that yielded the best results in 
terms of determination coefficient (R2) and root mean 
square error (RMSE) on the training and verifying 
steps may be determined through trial and error 
process. For this purpose the data set is divided into 
two parts: the first 75% of total data were used as 
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training set and the second 25% are used for 
verifying purpose. The R2 and RMSE measures of 
evaluation (Eqs 8 and 9) have been used to compare 
the performance of the different models:  
  












 n

i
i

n

i
ii

OO

CO
R

1

2

1

2

2

)(

)(
1

 

(8) 
 

 





n

i
ii CO

n
RMSE

1

2)(
1

 

(9) 

 
where n, Oi, Ci and Ō are number of observations, 
observed data, predicted values and mean of 
observed data respectively.  

The RMSE is used to measure forecast accuracy, 
which produces a positive value by squaring the 
errors and increases from zero for perfect forecasts 
through large positive values as the discrepancies 
between forecasts and observations become 
increasingly large .Obviously high value for R2 (up to 
one) and small value for RMSE indicate high 
efficiency of the model. 
 
RESULTS AND DISCUSSION 
 

In the present study, multi-station modeling of 
rainfall-runoff have been investigated with three 
ANN based models. In this way, three scenarios have 
been proposed. In order to improve the capability of 
ANN based models for dealing with large amount of 
multi-station rainfall and runoff data, a preprocessing 
tool called SOM, have been employed for clustering. 
In the following, each of the scenarios have been 
introduced and discussed.  
 
Scenario 1 
 

In the 1st scenario, precipitation and discharge values 
of both discharge and rain stations 1 to 5 associated 
to five sub-basins, were imposed to ANN 
individually, in order to predict one-day-ahead runoff 
for of each sub-basins. The modeling were performed 
using the FFNN algorithm by examining 3 to 20 
hidden neurons in a single hidden layer using the 
Levenberg–Marquardt training scheme up to 400 
training epochs. The training was terminated at the 
point where the error in the validation data set began 
to rise to ensure that the network did not over fit the 
training data and then fail to generalize the un-seen 
test data set. No great improvement in modeling 
performance was found when the number of hidden 
neurons was increased above a threshold. At this 
stage, the model efficiency criteria were calculated 

via observed and computed data of each station to 
determine the best ANN model. The NNTOOL 
within the MATLAB software was used for network 
training purposes (MathWorks, 2010).  

Comparison of the best results in terms of 
evaluation criteria, at Table 4 indicates accurate 
performance of ANN-based rainfall-runoff modeling 
in prediction of discharge. 

Although the prediction results are appealing, 
there are some deficiencies involved in the first 
scenario which makes it to be under the shadow of 
doubt. Table 3 denotes that prediction results for 
stations number 1 and 6 (i.e., outlet) are not as 
precise as the results for the middle stations of the 
watershed such as Q2, Q3, Q4 and Q5. Since the most 
important objective of these modeling is to have 
appropriate outlet prediction, it is of prime 
importance to have appropriate predicting results for 
station 6, but the poor evaluation criteria in 
comparison to other stations do not prove it properly. 
The deficiency may refer to the fact that the 
discharge at outlet station is affected by runoff from 
entire watershed including upstream stations 
discharge, rather than a sub-basin rainfall-runoff 
pattern. In order to obtain accurate ANN-based 
model for outlet discharge station, it is necessary to 
consider effects between the sub-basins, thus, the 2nd 
scenario is proposed.  
 
Scenario 2 
 

In the 2nd scenario, the rainfall data of upstream 
stations are neglected from imposing to ANN 
directly, assuming that the effect of them is occulted 
in discharge data of each station. In this way, the 
discharge data of all the upstream station along with 
the rainfall data of the nearest station to the outlet of 
the watershed are imposed to ANN and the prediction 
pattern are taken out.  

The values of R2 and RSME for the second 
scenario are presented in Table 5. The greatest value 
for both training and verifying steps for the station 
number 6 are 0.786 and 0.754, respectively. The 
results of this 2nd scenario are almost the same as the 
first scenario in spite of different inputs. The 
superiority of the 2nd scenario against the first one is 
that runoff values at the outlet can be predicted via 
data of upstream without considering data of outlet 
itself. This may be effective in flood forecasting and 
subsequently flood alert systems. The probable 
shortcoming of 2nd scenario can be the imposition of 
all data without any pre-processing. It means that if 
some of the discharge stations at upstream involve 
noises, the noise can be accumulated by considering 
all the discharge data as inputs. Although ANN 
assigns the low weights for the noisy data and makes 
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the outcome less sensitive to inappropriate data, the 
increase in the number of stations leads to increase 
data and the noise occulted in high dimensional data, 
may more greatly be propagated in the long term 
forecasting. Therefore, in 3rd scenario it is tried to 
obviate the aforementioned shortcomings and present 
an effective multi-station discharge forecasting 
model. 

 
Scenario 3 

 

It is concluded from 1st scenario that in order to 
obtain accurate and reliable prediction, a new method 
called multi-station modeling, should be employed. 
Obtained results from the 2nd scenario with the 
approach of multi-station modeling, demonstrated 
that plethora of input variables without any 
preliminary pre-processing may lead to less accurate 
results. Besides, the 1st and 2nd scenarios do not 

provide certain solution for determining the dominant 
inputs and time lags, thus, are dependent on a trial-
error procedure. The conventional trial and error 
procedure to select the most dominant inputs from 
large datasets is a time consuming due to existence of 
several input combinations that need to be examined. 

The number of trials for a model with n input 
variables is 2n-1. Therefore, if the trial–error method 
were used in this study to determine the effective and 
dominant inputs for predicting the outlet watershed, 
211-1combinations (6 discharge stations and 5 
precipitation stations) of inputs would need to be 
examined as the ANN inputs. Since the all 
precipitation and discharge stations do not have an 
equal effect on runoff values or do not provide 
informative input data, the use of only selected inputs 
into the ANN simplifies the model structure and leads 
to better results. 

 
 

Table 4 Performance of ANN model for scenario 1 
Discharge 
Station No. 

Combination 
No. 

Input 
variables 

Best 
structure 

Epoch 
R2 RMSE(normalized) 

Calibration Verification Calibration Verification 

(1) 1 
*Qt

1
-1, Qt

1
-2 

**It
1

-1, It
1

-2 
4.7.1 130 0.728 0.706 0.036 0.034 

 
 2 

Qt
1

-1, Qt
1

-2, Qt
1

-3 

It
1

-1, It
1

-2 , It
1

-3 
6.9.1 310 0.752 0.738 0.035 0.033 

(2) 1 
Qt

2
-1, Qt

2
-2 

It
2

-1, It
2

-2 
4.7.1 260 0.833 0.825 0.029 0.022 

 2 
Qt

2
-1, Qt

2
-2, Qt

2
-3 

It
2

-1, It
2

-2, It
2

-3 
4.8.1 230 0.834 0.822 0.028 0.023 

(3) 1 
Qt

3
-1, Qt

3
-2 

It
3

-1, It
3

-2 
4.9.1 150 0.814 0.751 0.032 0.029 

 2 
Qt

3
-1, Qt

3
-2, Qt

3
-3 

It
3

-1, It
3

-2, It
3

-3 
6.11.1 240 0.818 0.751 0.033 0.032 

(4) 1 
Qt

4
-1, Qt

4
-2 

It
4

-1, It
4

-2 
4.8.1 140 0.832 0.815 0.028 0.026 

 2 
Qt

4
-1, Qt

4
-2, Qt

4
-3 

It
4

-1, It
4

-2, It
4

-3 
6.6.1 220 0.834 0.811 0.028 0.025 

(5) 1 
Qt

5
-1, Qt

5
-2 

It
5

-1, It
5

-2 
4.4.1 160 0.808 0.773 0.030 0.031 

 2 
Qt

5
-1, Qt

5
-2, Qt

5
-3 

It
5

-1, It
5

-2, It
5

-3 
6.5.1 200 0.814 0.779 0.032 0.030 

(6) 1 
Qt

6
-1, Qt

6
-2 

It
5

-1, It
5

-2 
4.9.1 180 0.798 0.763 0.031 0.032 

 2 
Qt

6
-1, Qt

6
-2, Qt

6
-3 

It
5

-1, It
5

-2, It
5

-3 
6.8.1 250 0.780 0.759 0.030 0.031 

* Superscripts ranging from 1 to 5 denote the discharge station numbers. 
** Subscripts t-1, t-2 and t-3 indicate the lag time with 1, 2 and 3 days. 
 

  Table 5 Performance of ANN model for scenario 2
Discharge 
Station No. 

Combination 
No. 

Input 
variables 

Best 
structure 

Epoch 
R2 RMSE(normalized) 

Calibration Verification Calibration Verification 

(6) 1 
*Qt

i
-1, Qt

i
-2 

It
5

-1, It
5

-2 
(12,8,1) 290 0.773 0.741 0.032 0.025 

 2 
Qt

i
-1, Qt

i
-2 , Qt

i
-3 

It
5

-1, It
5

-2, It
5

-3 
(18,9,1) 310 0.786 0.754 0.028 0.025 

* i ranging from 1 to 5 denotes the discharge stations. 
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In the 3rd scenario the SOM clustering technique, 
applied to identify homogenous rainfall and runoff 
data of all stations. Dominant precipitation and 
discharge stations time series which are 
representative of the watershed precipitation and 
discharge can be identified using a spatial clustering 
method, such as SOM clustering method. The 
Euclidean distance criterion (Bowden et al., 2005) 
was then utilized to select the centroid time series of 
each cluster, which is the best representation of the 
discharge and precipitation pattern of each cluster. To 
apply the SOM on the rainfall and runoff data, the 
size of the Kohonen layer was determined as a 3-by-3 
grid. Since there is no theoretical principle for 
determining the optimum size of the Kohonen layer, 
the Kohonen layer should be large enough to ensure 
that a suitable number of clusters are formed from the 
training data (Cai et al., 1994). After creation of the 
3-by-3 Kohonen layer, the number of rainfall and 
runoff time series and their position on the SOM was 
determined by hits map of SOM (Fig. 4a). The first 
cluster involves the discharge records of station 1 

(Q1) and precipitation values of stations 1 and 2 (I1 
and I2) (Table 6).  

 
The SOM clustering led to three classes of data 

(Table 6) and Fig. 4b shows the neighbor weight 
distances, where the dark hexagons represent the 
neurons. The colors in the regions indicate the 
distances between neurons, with the darker colors 
representing larger distances, and the lighter colors 
representing smaller distances. It is apparent from 
Fig. 5b that the middle dark line divides the rainfall 
and runoff stations data to three clusters. The cluster 
numbers of each neuron and each variable dedicated 
to neurons have been depicted in Fig. 5a and b. 
 

Table 6 clusters and members distribution

Cluster number  Cluster members Center of clusters 

1 I1, I2, Q1 I2 

2 I3, I4, I5 I3 

3 Q2, Q3, Q4, Q5 Q4 

  

Fig. 4 The 2-Dimensional SOM clustering of rainfall and runoff data (a) SOM hits with numbers of members 
 (b) SOM neighbor weight distances plan.  

 

 
Fig. 5 The 2-Dimensional SOM clustering of rainfall and runoff data (a) SOM hits with members (b) SOM neighbor weight 

distances plan including clusters membership numbers. 
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The second cluster contains the precipitation data 

of all the remaining rain gauges that have not been 
clustered in cluster 1(I3, I4 and I5). The 3rd cluster 
denotes that discharge data at stations 2, 3, 4, 5 have 
similar values and have similarities in time series that 
have been clustered in a cluster. SOM clustering 
results according to topologic property of data 
adequately corresponded to the topographic position 
of stations, so that precipitation data of five rain 
gauges have been clustered in two different clusters; 
cluster number 1 (I1, I2) and cluster number 2 (I3, I4 
and I5). As shown in the Fig. 6 the cluster number 1 
includes discharge data of station 1 (Q1), the first 
station in the stream network, which may because of 
geographical position of this station that takes effect 
only from precipitation values of stations number 1 
(I1) and 2 (I2), the SOM puts three stations (Q1, I1 and 
I2) into one cluster. According to the results, cluster 1 
encompass one discharge recodes (Q1) and two rain 
gauge data (I1, I2); since discharge station 1 is located 
at the top north of the watershed, the only feeding 
source for the relevant stream is precipitation data of 
rain gauges 1 and 2 (I1, I2), therefore discharge data 
of station 1 and precipitation data of rain gauges 1, 2 
demonstrate the same pattern and clustered in the 
same cluster (cluster number 1).  

Likewise, the second cluster gathered all the 
remained rain gauges data in a same group, according 
to the size of watershed at the central part 
accumulation of rain gauges in one cluster indicates 
the minimum spatial variability of precipitation data 
in roughly small area. Ultimately, the 3rd cluster 
indicates that all the discharge stations which are 
located on the mainstream of the watershed or near to 
it are collected in the same cluster. Regarding to the 
physics of watershed such grouping of the discharge 
data via SOM greatly coincide the clustering results. 
Therefore, clustering results of mathematical based 
and unsupervised modeling of SOM with the physical 
realities of the watershed arrives to the approach of 
decreasing variables. Selection of just one member 
from each cluster which all follow the same pattern 
and play the same rule in ANN-based forecasting 
model might be effective from the view point of 
variable and noise diminishing. Therefore, the 
dominant member of each cluster is determined via 
Euclidean distance criterion to select the central time 
series of each cluster and imposed to ANN in order to 
model the outlet runoff of the watershed.  

Employing the Euclidean distance in order to 
select the dominant variables from SOM clustering 
methods led to choose of three dominant time series, 
which are the representatives for three clusters. As it 
is apparent from Table 6, precipitation data of 
stations numbers 2 and 3 (I2 and I3) were determined 
as the representatives of clusters 2 and 3. Also, 
discharge station number 4 (Q4) was selected as a 
dominant representative of cluster 3. It should be 
noted that I3 and Q4 are the central stations which 
located in central part of watershed. This type of 
dominant determining is inconsistent with the 
watershed geographical characteristics for example 
upstream precipitation stations have considerable 
effects for watershed outlet station (Q6). As 
mentioned before, in order to take advantages of 
multi-station modeling, it is necessary to use multiple 
stations data but using all the stations data without 
any pre-processing may cause insufficiency of model 
such as poor results, consuming time and complexity 
of model.  

So, by applying the SOM and extracting dominant 
data sets, ineffective data is prevented from entering 
into the model. It can be concluded that, in this study, 
precipitation data of I2 and I3 and discharge data of 
Q4 are the best representatives of inputs. Employing 
clustering and selection of dominant time series 
resulted in selecting Q4 among the other discharge 
stations in cluster 3 because considering the situation 
of discharge stations located on the main stream and 
other branches, Q4 is the better choice than Q3 and 
Q5. In other words, Q4 which is located on the main 
stream and central part of watershed may lead to 
accurate results than other stations. Accompanying 
the Q4 with I2 and I3 consider the precipitation and 
upstream effect which is suitable for forecasting 
purposes. The results tabulated in Table 7 denote the 
high performance of SOM-ANN multiple stations 
model in predicting outlet discharge. 

Third scenario provides superior solution in order 
to predict discharge by reducing the input variables 
into 3 variables and the structure of ANN simplified 
with 5 neurons in hidden layer in comparison to 
second scenario and finally the R2 values for both 
training and verification steps increased to 0.829 and 
0.818, respectively. Figure 7 shows the scatterplots 
of the computed versus observed discharge values of 
outlet station (Q6) related to the coupled SOM and 
ANN (scenario 3) modeling.  
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Fig. 6 Members of three clusters on watershed. 

 

Fig.7 Scatterplots for the station 6 employing the scenario number 3 (a) calibration step (b) verification step.

 
In the proposed coupled SOM-ANN model, 

application of the SOM, forced the model to capture 
similar patterns of data in various stations according to 
an un-supervised technique which determined the 
dominant time series that best represented the rainfall 
and runoff pattern over the watershed.  

The selection of dominant time series among a 
number of time series reduced time and labor in 
modeling, as the dimensionality of input dataset was 
decreased as well as the number of trial–error 
procedures required to optimize the model. 
Furthermore, the positions of the clustered stations were 
compatible with the geographical characteristics of the 
watershed. Following spatial pre-processing, the ANN 

rainfall–runoff model was constructed to find the non-
linear relationship between the selected precipitation 
data and runoff.  

In the proposed coupled SOM-ANN model, 
application of the SOM, forced the model to capture 
similar patterns of data in various stations according  

The selection of dominant time series among a 
number of time series reduced time and labor in 
modeling, as the dimensionality of input dataset was 
decreased as well as the number of trial–error 
procedures required to optimize the model. 
Furthermore, the positions of the clustered stations were 
compatible with the geographical characteristics of the 
watershed. Following spatial pre-processing, the ANN 

Table 7 Performance of SOM-ANN model for scenario 3
Discharge 
Station No. 

Input 
variables 

Best 
structure 

Epoch 
R2 RMSE(normalized) 

Calibration Verification Calibration Verification 

(6) I2, I3 ,Q4 (4,5,1) 210 0.829 0.818 0.021 0.015 
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rainfall–runoff model was constructed to find the non-
linear relationship between the selected precipitation 
data and runoff.  

 
CONCLUDING REMARKS 

 

The objective of this study was to predict discharge at 
outlet station via multiple stations approach in Peace-
Tampa Bay watershed at Florida State. For this purpose 
the ANN with FFNN and BP training algorithm was 
utilized under three scenarios to have appropriate 
rainfall-runoff model in predicting outlet discharge over 
the watershed by using data of discharge and 
precipitation in several stations. The comparison of 
scenarios revealed that the 3rd scenario which utilized 
SOM clustering method, performed effectively in terms 
of R2 and RMSE criteria.  

The ANN modeling which employed in the first 
scenario predicted the discharge with acceptable range 
of R2 and RMSE criteria but mentioned methodology in 
first scenario could not reveal efficient performance in 
all discharge stations within the watershed. Through the 
first scenario the discharge for one particular station 
takes effect not only from the precipitation of relevant 
sub-basin but also the whole watershed as well as 
precipitation of other sub-basins, thus first scenario 
could not be able to predict the outlet discharge very 
effectively, the evaluation results in terms of R2 could 
demonstrate the inefficiency of the proposed model (i.e., 
0.78 and 0.759 for training and verification steps, 
respectively). The 2nd scenario considers multiple 
discharge stations of the watershed (i.e., stations 1 to 5) 
beside the precipitation data of outlet rain gauge as 
inputs to ANN model. The rainfall data of upstream 
stations are neglected from inputs, assuming that the 
effect of precipitation would appear in downstream 
discharge stations. Imposition of the aforementioned 
data increase the dimension of input and may cause the 
noise propagation, moreover the ANN structure 
becomes more complex as the hidden neurons number 
increase to 8 or 9 and epoch numbers ranges from 290 
to 310 comparison to 1st scenario.  

Although the 1st and the 2nd scenarios had acceptable 
results, the third scenario performed more reliable than 
1st and 2nd scenarios in multi-station discharge 
prediction with more simple ANN structure. 
Application of SOM classified the discharge and 
precipitation data with similar patterns in a same group, 
which was compatible to physical properties of 
watershed. Finally, selection of dominant member of 
each cluster and imposition of 3 representatives among 
all 10 discharge and precipitation data as the inputs 
variables of ANN led to the most effective multi-station 
prediction of discharge at this study area.  

The methodology presented herein not only is 
applicable in other regions with different climatic 
regimes, but also it could be utilized in other 

hydrological processes such as sediment. As a 
suggestion for future studies, and to improve the model 
results, in addition to the spatial pre-processing of the 
stations, a temporal data pre-processing (using wavelet 
transform, Nourani et al., 2009, 2011a,b, 2013) may 
also be applied on the discharge and precipitation time 
series before any ANN training.  
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