
Schmidt, Bressiani, Reis and Salla 

Journal of Urban and Environmental Engineering (JUEE), v., n., p.,  

62

UEEJ  

Journal of Urban and Environmental 
Engineering, v.10, n.1, p.062-071 

Journal of Urban and 
Environmental Engineering 

ISSN 1982-3932 
doi: 10.4090/juee.2016.v10n1.062071 www.journal-uee.org

 
 

EVALUATION OF THE PERFORMANCE OF IMAGE 
CLASSIFICATION METHODS IN THE IDENTIFICATION OF 

VEGETATION 
 

Marcio Augusto Reolon Schmidt, Jaciane Xavier Bressiani, Patrícia Antunes Dos Reis and 
Marcio Ricardo Salla 

Department of Civil Engineering, Federal University of Uberlândia, Brazil 
 

Received 13 April 2015; received in revised form 20 March 2016; accepted 10 June 2016 

 
 
Abstract: Orbital imaging techniques offer comprehensive coverage of different regions for 

numerous environmental and socioeconomic applications, revealing the spatial 
characteristics and land use of those regions.  The advantages of remote sensing include 
its ability to record spatial distribution patterns, and spectral and temporal data over 
large regions. The objective of this research is to evaluate the performance of different 
multispectral image classification methods in the selection of general vegetation, based 
on a set of samples taken from a Landsat 8 image.  The quality of multispectral images 
and their final classification is usually evaluated based on the Kappa index, which is 
used as the quality standard in many remote sensing software programs. The 
classification methods chosen for this study were Parallelepiped, Maximum Likelihood, 
Mahalanobis Distance, and neural networks. The most suitable classification was used 
as standard and the other images were compared with it to determine the degree of 
similarity ranking (IS1x), defined as the percentage of pixels classified differently from 
those of the standard image.  The IS1x was determined using a Matlab routine involving 
pixel subtraction between images. The results indicate that probability distribution 
methods are more suitable for discriminating vegetation types than other methods, and 
that some band combinations should be chosen. 
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INTRODUCTION 

Environmental analysis involves phenomena widely 
distributed in the landscape. Some examples of the wide 
spatial occurrence of phenomena include the dispersion 
of pollutants along coastlines, land use and occupation 
of watersheds, and growth vectors of medium and large 
cities. It is essential to select the correct tools that allow 
for this type of analysis with the necessary scale and 
precision, and which provide a continuous broad 
coverage in order to obtain data for environmental 
analysis by experts. Remote sensing images stand out in 
this context.  

Orbital imaging techniques stand out because they 
provide a broad coverage of the study area, highlighting 
characteristics of land cover and land use, i.e., 
vegetation, soil, water and forests. In addition, this data 
collection technique can be used in different contexts 
such as mapping for military and civilian applications, 
environmental damage assessment, land use monitoring, 
urban planning and urban growth trends, agricultural 
productivity, etc. One of the main applications of 
remote sensing is to create thematic maps from 
significant land cover classes in a given setting as a way 
to reduce the dimensions of the analysis. 

The remote sensing community is interested in 
research on remote sensing image classification because 
this information collection technique is applicable in 
environmental and socioeconomic studies (Perumal & 
Baskaran, 2010). According to Al-Ahmadi and Hames 
(2009), one of the reasons why researchers and users 
prioritize the use of satellite images over other survey 
methods is their ability to determine spatial, spectral and 
temporal data about large regions, instead of having to 
obtain pointwise data, information from hard to reach 
places, and to create spatial patterns. 

According to Perumal & Baskaran (2010), image 
classification has become an important tool in the 
analysis of digital images in various applications 
involving spatial phenomena. However, the selection of 
the most suitable classification technique can have a 
significant impact on the results. If the classification is 
used as a final product or as an intermediate analytical 
process in a more complex analysis, it is essential to 
study the problem, select the images, collect samples, 
and choose the appropriate classification method. 
 
SUPERVISED CLASSIFICATION 
 
According to Richards & Jia (2006), supervised 
classification is the procedure most commonly used in 
the quantitative data analysis of remote sensing images. 
This technique involves labeling the pixels in an image 
to represent certain types or classes of land cover. A 
variety of algorithms is available for this classification, 
ranging from algorithms based on probability 
distribution models, in which the multispectral space is 
divided into specific regions, to segmentation, object 

orientation and other algorithms. However, despite the 
existence of these techniques, most image classification 
software programs are based on pixel-to-pixel 
classification techniques, considering multidimensional 
analyses with as many variables as dimensions of space. 
In these techniques, the distribution determines the 
chance of finding a pixel belonging to this class in any 
given location in the multispectral space. These 
techniques include probability distribution techniques 
such as Minimum Distance, Maximum Likelihood, and 
Mahalanobis Distance.  

The probability distribution is determined based on 
an analysis of the samples selected by the user for each 
class in the image. By providing a group of pixels as a 
sample of a class, each pixel is considered a vector with 
each field corresponding to the value of reflectance of 
the class in a given bandwidth of the image. By 
determining the distance between the average pixel 
values of the class in each band, the evaluation can be 
performed based on a normal or Gaussian distribution, 
which measures the likelihood of the pixel belonging to 
one class or the other.   

Richards & Jia (2006) state that this distribution is 
robust in the sense that classification accuracy is not 
overly sensitive to the violation of the assumption that 
the classes meet normal distributions. However, the use 
other techniques such as the Mahalanobis distance, 
which includes internal variance of the classes, and 
artificial neural networks (ANN), enables different 
rankings for the same group of pixels.  

Classification procedures generally involve the 
definition of samples and their classification to evaluate 
their consistency, and the final classification is based on 
the limits set in the previous step. Regardless of the 
selected method, the quality of a supervised 
classification initially depends on the quality of the 
samples in terms of number of pixels and spectral 
representability. Subsequently, the results are dependent 
on the performance of the classification methods. 

Perumal & Baskaran (2010) argue that attention has 
only recently focused on comparative studies of 
classification methods that correlate their performance 
with certain types of data. Successful classification 
requires experience and experimentation by the user, 
who should select a classification method that best 
performs a specific task. Even if the best method for 
each type of image cannot be determined in every 
possible situation, it is important to be familiar with the 
characteristics of the methods and how to perform 
sampling correctly to ensure the highest possible 
accuracy in the classification of images. Another 
important point to keep in mind is the distribution of the 
samples.  Samples concentrated in a small portion of the 
image tend to exhibit similar responses and increase the 
bias of the classification. Distributed samples show 
greater variability, and thus tend to be more 
representative of the class to which they belong. In 
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general, the sampling quality and final classification are 
assessed based on the Kappa index.  

Kappa analysis is a discrete multivariate technique 
employed for the evaluation of thematic accuracy, 
which uses all the elements of a confusion matrix in its 
calculation. This robust technique is used as a standard 
to check the quality of the classical classification 
methods (Ben-David, 2008).  The Kappa coefficient (K) 
is a measure of the true concordance (indicated by the 
diagonal elements of the confusion matrix) minus the 
chance concordance (indicated by the total product of 
the row and column, which does not include 
unrecognized entries).  In other words, it is a measure of 
the degree to which the classification is in line with the 
reference data (Figueiredo & Vieira, 2007). This index 
therefore expresses the consistency of the sample itself, 
considering the pixels listed for each class, and how 
much the pixels in the image are consistent with the 
sampling of each class.   

Therefore, this paper presents a variation of 
classification methods starting from the same sample set 
over a range of spectral band combinations in a Landsat 
8 image to identify areas of vegetation in a small 
watershed.  The classification methods employed in this 
study were Parallelepiped, Maximum Likelihood, 
Mahalanobis Distance and neural networks, the latter 
because of its emphasis in the literature and the number 
and versatility of its applications.   
 
MATERIALS AND METHODS 
 
The main objective of this research is to evaluate the 
performance of different multispectral image 
classification methods in the discretization of vegetation 
in general, using the same samples taken from the same 
image. The methods selected here are part of the 
computational tools of ENVI 4.5 software, and their 
selection was based on their image resolution 
compatibility with the Landsat 8 series so as to exclude 
the methods developed for high-resolution images such 
as object orientation, quad-tree, segmentation and 
others. 

A Landsat 8 satellite image was used in this 
research. The sensor has eight spectral bands, with the 
multispectral bands ranging from blue to mid-infrared 
(bands 1–8), two thermal bands, and a panchromatic 
band (USGS, 2014).  Three different combinations were 
used for the tests, based on the image taken at orbit 73, 
point 221, recorded on 04 Oct 2014. The first band 
combination was with bands 5, 4, 3, the second with 
bands 6, 5, 4, and the third with bands 4, 3, 2, 
corresponding, respectively, to false-color, infrared and 
visible. These combinations were chosen because of the 
behavior of the spectral response of the vegetation, 
which is the target of this research, and presented in the 
literature by Jensen (2009). 

To assess the sensitivity of the classification 
methods, samples were selected containing 1, 3 and 5% 
of the total number of pixels in the image. This choice is 
explained by the fact that choosing samples in certain 
land cover classes presents a certain degree of difficulty, 
e.g., in cases in which untrained human operators may 
adopt an excessively small or large number of samples. 
In the former case, the samples would be insufficient to 
train the classification algorithm, and in the latter, a 
large number of samples could influence the responses 
of the algorithms, inducing unrealistic limits, 
particularly in the simpler classification methods.  By 
default, eight areas of mixed vegetation were selected 
(pastureland, scrubland and forests) in the images.  In 
ENVI software, the sample areas selected by the user 
are called ROI (Regions of Interest) and can be saved in 
a file. This feature of the program enabled the same 
samples to be used in each test and in each variation of 
the classification methods and band combination. A 
description of the tested methods is given below.  
 
(a) Parallelepiped Method 
This is the simplest method, in which each band that 
makes up an image is represented as an axis in a tri-
orthogonal Cartesian system. Thus, a given class is 
represented by the minimum and maximum values of its 
projection on each axis. The class can be understood as 
a triaxial ellipsoid in this space, and the values of the 
vectors that define the characteristics of each pixel must 
be contained in the image in order to be allocated to this 
class.  

However, this technique poses a problem when 
samples are not spectrally pure, i.e., they do not contain 
only pixels of the same class, which may cause them to 
overlap the boundaries of another class. This may lead 
some pixels to be incorrectly attributed to one of the 
conflicting classes. Moreover, some pixels may fail to 
be classified because the limits adopted by the sample 
may not be representative of all the pixels in the image.  
 
(b) Maximum Likelihood Method (MLM) 
This is one of the most popular methods of supervised 
classification used with remote sensing data (Richard & 
Jia, 2006; Jensen, 2009).  This method involves the 
determination of the probability of a pixel belonging to 
a given class, based on normal probability distribution. 
The probability is estimated from the trained samples, 
which are used to calculate the means and variances of 
the classes to which they are associated, and also 
considers the variability of the brightness values in each 
class. This classifier is based on Bayesian probability 
theory and is one of the most powerful classification 
methods when accurate sampling data are provided 
(Perumal & Bhaskaran, 2010).  This method depends 
strongly on a normal distribution of data in each spectral 
band of the image, and tends to over-classify spectral 
signatures with relatively high values in the covariance 
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matrix (Ahmadi & Quegan, 2012) when samples are 
contaminated with pixels from other classes. Equation 
1 shows the Bayesian classification (Richards & Jia, 
2006):  
 

| .  (1)

 

where: 
x = intensity vector of the sampled pixel in each band of 
the image  
wi = class i of the set of classes selected by the user  
p(x) = probability of vector x  
p(x|wi) = conditional probability vector of the pixel in 
each band for class wi 
p(wi) = probability of the class occurring in the image 
compared to that of the other classes  
i = 1 ... n = number of classes  
 
(c) Mahalanobis Distance 
The Mahalanobis distance method considers that the 
correlations between samples represent the distance 
from the average of the class, scaled by the class 
covariance (Li & Fox, 2011). Thus, the method 
considers both inter- and intra-class spectral variability. 
The Mahalanobis distance is a useful way to determine 
the similarity of an unknown sample to a set of known 
samples, as in the case of supervised classification.    
However, like the MLM, this method tends to over-
classify pixels with spectral responses of relatively high 
values in the covariance matrix, and is also strongly 
dependent on the normal distribution of data in each 
band of the image (Li & Fox, 2011; Fauvel et al., 2010).  

Li & Fox (2011) argue that, because it is a statistical 
method, it can be used to produce the measure known as 
typicality, which is the probability of any site to have a 
Mahalanobis distance greater than or equal to the one 
observed for the site of interest. Thus, the pixel is 
classified according to the shortest Euclidean distance 
between the pixel and the class, considering the 
typicality of the sample (Eq. 2): 
 

, 	 . ∑      (2) 
 
where: 
x = intensity vector of the sampled pixel in each band of 
the image  
mi = vector of mathematical expectation of each element 
of x in class i  
Σ-1 (x – mi) = covariance matrix of sampled pixels for 
class i 
d (x,mi) = Euclidean distance between pixel x and class 
mi 
 
(d) Artificial Neural Networks (ANN) 
Artificial Neural Network (ANN) models are based on 
machine knowledge and learning, and according to 

Mohammady et al. (2014), they are powerful tools to 
quantify and model complex data distribution patterns 
whose function is to handle imprecise training data. In 
these models, the ANN is arranged in an input layer, at 
least one intermediate layer, and an output layer, and 
each layer can contain from one to several neurons, 
called perceptrons.  The network learns by adjusting the 
weight of each link between layers to minimize the 
difference between the output and input. The input layer 
receives the vectors from the pixels used as samples. 
The intermediate layers combine the links between the 
perceptrons of the input layer to create a set of 
discriminant functions that can limit the characteristics 
of the classes in each band (Richards & Jia, 2006).  

After the network has been trained with the samples 
taken from the images, the recursive method introduced 
by backpropagation enables the automated adjustment 
of the weights defined for the various layers of the 
network, which is understood as the network learning 
process. Forward and backpropagation is applied 
successively until the network has learned the 
characteristics of all the classes, and the root-mean-
square error (RMSE) between the embedded and ideal 
activation levels reaches an acceptable value (Richards 
& Jia, 2006).  

For the tests, the classification methods were set up 
according to a few minor user-defined adjustments of 
the ENVI settings. For the MLM, Mahalanobis and 
Parallelepiped methods, a single value of no less than 
90% was set for the standard deviation in order to 
control the classification parameters. In the ANN 
method, the activation function was set at a value of 0.9 
for the contribution of the training threshold and 0.2 for 
the training rate. The “Training RMS Exit Criteria” was 
set to 1.0 as the limit value in which the training should 
stop, with 1 being the number of internal layers for 
nonlinear classification and 1000 for the desired number 
of interactions in the implementation of training.  
 

 
Fig. 1 Configuration diagram of a neural network. 
Source: Adapted from Richards & Jia (2006) 
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Table 1. Kappa index obtained in the classification of the samples in RGB Colorspace 
 RGB Colorspace  

COMBINATION False-color band combination  
(bands 6,5,4) 

Infrared band combination 
(bands 5,4,3) 

Visible band combination 
(bands 4,3,2) 

METHOD Sample size 
 1% 3% 5% 1% 3% 5% 1% 3% 5% 

Parallelepiped 0.998 0.964 0.965 0.147 0.152 0.214 0.927 0.907 0.879 

Maximal Likelihood 1.000 1.000 1.000 1.000 0.915 0.943 0.998 0.919 0.925 
Mahalanobis Distance 1.000 1.000 0.999 0.925 0.391 0.504 0.976 0.833 0.843 

Artificial Neural 
Network 

1.000 0.853 0.851 0.971 0.516 0.566 0.992 0.441 0.148 

          
Finally, the classification results of each method 

were transformed into binary images. In these images, 
the pixel classified as vegetation was set to a value of 1 
(white) and any other areas were classified as 0 (black). 
Based on photo-interpretation, the image that most 
closely resembled the original image was used as a 
standard against which the other binary images were 
compared in order determine the degree of similarity. 
The degree of similarity was defined as the percentage 
(IS1x) of pixels classified differently from those of the 
standard image (Eq. 3),  
 

∑

∑
              (3) 

 
where: 
pwi1x = number of standard image pixels classified as 
vegetation 
pwi11 = number of pixels of the other images classified 
as vegetation. 
 

RESULTS AND DISCUSSION 
  
Table 1 describes the results of the classification of the 
samples by combination, sampling size and 
classification method. It is noteworthy that, as the 
sample size increases, the Kappa index decreases to less 
than 1% of the sample. The values in Table 1 suggest 
that the more complex the method the lower the 
resulting Kappa index.  

The infrared combination presented the worst results, 
i.e., significantly lower quality than that of the other 
methods. This may indicate that this combination does 
not allow for a clear definition of the limits of 
vegetation classes based on the samples in the simpler 
methods or not based on probability distribution. This is 
partially due to the spectral response of vegetation in the 
red and infrared bands of the Landsat satellite, which 
show similar responses of chlorophyll, although these 
responses present seasonal variations. 

 
 

False-color band combination (bands 6,5,4) 
 

Visible band combination (bands 4,3,2) 

a – Parallelepiped method b – Parallelepiped method 
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c – Maximum Likelihood method 
 

d – Maximum Likelihood method 
 

e – Mahalanobis Distance method 
 

f – Mahalanobis Distance method 

g – Artificial Neural Network h – Artificial Neural Network 
 

Fig 2. Images resulting from each classification method using samples equivalent to 3%. 
 

Another classification that stands out is the results of 
the neural networks in the infrared (bands 6, 5, 4) and 

visible (bands 4, 3, 2) band combinations of RGB 
Colorspace. Table 1 reveals a significant decrease in the 
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Kappa index in response to increasing sample size. This 
appears to indicate that the network configuration used 
here may be sensitive to noise in the training data in 
these combinations. In the ENVI program, the network 
configuration options for the user are limited. This also 
holds true for the other classification methods that are 
less robust than the MLM. 

The three original combinations were then classified 
within the limits identified by each method. This study 
assessed only the vegetation class in general. Therefore, 
the image resulting from each method is binary, i.e., 1 
(white) corresponds vegetation and 0 (black) to non-
vegetation. Figure 1 illustrates the results of two 
combinations in the RGB Colorspace applied to the 
Parallelepiped (Figs 1a and 1b), MLM (Figs 1c and 
1d), Mahalanobis Distance (Figs 1e and 1f) and ANN 
(Figs 1g and 1h) methods with a 3% sample.  

Note that the variations in the areas obtained with the 
3% sample were visually similar in the false-color band 
combination (Fig. 1, left-hand column), and 
significantly greater the visible band combination.  

A visual analysis revealed that the MLM presented 
better results than the other methods in the false-color 
band combination. The Mahalanobis method also 
presented a good resolution of the vegetation polygons 
in the visible and false-color band combinations, but 
poor resolution for the area of scrubland vegetation, 
where the pixels merged with those of exposed soil. The 
Parallelepiped method contains information not 
identified by the sample, known as no data, which 
appeared in the image of the false-color band 
combination, directly influencing the quality of the final 
image. The best classification obtained by the ANN 
method was with the false-color band combination, 
which presented highly detailed vegetation polygons. 

To calculate the relative degree of similarity between 
the classification methods (IS1x), a routine was 
developed in Matlab to compare each of the classified 

images against the standard image by means of pixel-
by-pixel subtraction. As a result, new images were 
obtained whose pixel values express the differences 
from the standard image. These differences are 
expressed mainly at the edges of vegetation polygons. 
The IS1x were then determined, as shown in Table 2.  

The correlation established between the Kappa index 
of the samples and the resulting classification by each 
method are shown in Fig. 2. In Fig. 2, note that the 
highest Kappa values are lower in the (1%) samples. In 
the false-color band combination (Fig. 2a), all the 
methods presented a classification index above 0.8, but 
they tended to stabilize at lower values when the sample 
size was increased. In Fig. 2b, the infrared band 
combination showed the worst results in response to 
variations in sample size. The parallelepiped method 
was significantly affected by this combination. As can 
be seen in Fig. 2c, visible band combination, only the 
ANN method was affected by the change in sample size, 
possibly indicating that the method was unable to 
discretize the new samples. However, the values 
obtained by other methods were higher than 0.8, with 
values close to the false-color ones. 

Figure 3 illustrates the behavior of the similarity 
index, which follows the trend described by the Kappa 
index. The classifiers based on probability distribution 
yielded better results when the neural networks showed 
a higher variation in response to the increase in samples. 
Figure 3b shows that the best results for the infrared 
band combination were obtained with the classification 
method based on probability distribution. Moreover, the 
similarity values and these methods show similar and 
constant results, while the parallelepiped method shows 
significant variations in this combination. Overall, the 
neural networks showed the poorest classification 
results, indicating the need for further tests using new 
settings to achieve more consistent results. 

 
Table 2. Similarity index of the classification methods (in %) 

 RGB Colorspace  
COMBINATION False-color band 

combination  
(bands 6,5,4) 

Infrared band 
combination 
(bands 5,4,3) 

Visible band 
combination 
(bands 4,3,2) 

METHOD Sample size 
 1% 3% 5% 1% 3% 5% 1% 3% 5% 

Parallelepiped 
 

0.7902 0.83928 0.8945 0.8506 0.6046 0.6163 0.8347 0.8498 0.8591 

Maximal 
Likelihood 

0.9099 1 0.9303 0.8669 0.8169 0.8299 0.6208 0.7424 0.8002 

Mahalanobis 
Distance 

0.8855 0.8872 0.8896 0.7794 0.8472 0.8438 0.8143 0.8083 0.8336 

Artificial Neural 
Network 

0.8316 0.7022 0.2950 0.6437 0.4866 0.5060 0.6977 0.4889 0.4482 
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(a) 

 
(b) 

 
(c) 

 
Fig 2. Kappa index of each classification method for 1, 3 and 5% of the samples.  
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Fig 3. Variation of the similarity index among the classified images. 
 

The final quality of the images was evaluated based 
on an ANOVA significance test. This test assesses the 
degree of significance of the means of two samples 
based on normal distribution. In this test, the pixels used 
to calculate IS1x were written as vectors of pairs of 

values and were analyzed in Matlab. The results did not 
show a positive relationship between the samples, 
indicating that the results are uncorrelated, and hence, 
the Kappa values and IS1x indices are independent of 
each other.  
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CONCLUSIONS 
 
This study compared four of the multispectral 
classification methods most widely used in remote 
sensing. The image band combinations were found to 
affect class separation quality, and hence, the Kappa 
index values. This indicates that deterministic methods 
may produce a lower quality of pixel separability and 
class identification in the classification process. In 
addition, the Kappa index may not reflect the same 
degree of coherence in an evaluation of the sample and 
of the classified image. Based on the results, it can be 
stated that the more complex the method the lower the 
Kappa index obtained in the classification, and that a 
large number of samples representative of the classes 
does not always suffice to qualify the result.  

The size, distribution and composition of samples 
should be analyzed carefully. The collection of samples 
with an acceptable level of reliability requires 
experience on the part of the user, since this process, as 
well as the visual checking of the results, are very time-
consuming, but lead to positive outcomes in the 
definition of the results.  

This research revealed that the same combination of 
classification method, image bands, sample size and 
distribution cannot always be applied for all land use 
identification purposes. In fact, each situation requires a 
separate analysis, applying band combinations that best 
meet the objectives of the study. The conclusion 
reached in this research is that the use of supervised 
classification should take into account not only band 
combinations but also the classifier method and the 
number of samples, aiming for a result that is most 
representative of the reality of the classes. As a 
continuation of this research, we plan to change the 
color space to HSV and carry out a new analysis.  
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