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Abstract: Successful modeling of hydro-environmental processes widely relies on quantity and 

quality of accessible data and noisy data might effect on the functioning of the 
modeling. On the other hand in training phase of any Artificial Intelligence (AI) based 
model, each training data set is usually a limited sample of possible patterns of the 
process and hence, might not show the behavior of whole population. Accordingly in 
the present article first, wavelet-based denoising method was used in order to smooth 
hydrological time series and then small normally distributed noises with the mean of 
zero and various standard deviations were generated and added to the smoothed time 
series to form different denoised-jittered training data sets, for Artificial Neural 
Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) modeling of 
daily rainfall – runoff process of the Oconee River watershed located in USA. To 
evaluate the modeling performance, the outcomes were compared with the results of 
multi linear regression (MLR) and Auto Regressive Integrated Moving Average 
(ARIMA) models. Comparing the achieved results via the trained ANN and ANFIS 
models using denoised-jittered data showed that the proposed data processing approach 
which serves both denoising and jittering techniques could improve performance of the 
ANN and ANFIS based rainfall-runoff modeling of the Oconee River Watershed up to 
13% and 11% in the verification phase.  
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INTRODUCTION 

Nowadays water resources management is vitally 
important task and optimum planning of irrigation 
projects, development and exploitation of water 
resources especially during drought and flood events 
will be strictly dependent to the accuracy of the used 
rainfall-runoff modeling tool. Therefore different 
models have been already developed and employed for 
modeling rainfall-runoff process of the watersheds. 
Owing to the large number of vague physical 
parameters in the hydrological processes, black box 
(lumped) models are mostly applied, since they may 
have some benefits over fully distributed models 
(Nourani and Mano 2007). For instance, successful 
hydro-environmental applications of auto regressive 
integrated moving average (ARIMA) and multi linear 
regression (MLR) models have been already reported 
by several researchers (e.g. see Wang et al. 2015; Salas 
et al. 1980; Zhang et al. 2011).  

Although these models are linear and may 
sometimes not be accurate due to their incapability to 
deal with non-stationary and non-linearity, they are 
still applied in practice because they can be easily used 
to compare and evaluate the effectiveness of novel 
methods. As such black box models, Artificial Neural 
Network (ANN) has recently indicated great ability for 
rainfall-runoff modeling (e.g., Nourani and 
Saeidifarzad 2016; Nourani et al. 2014; Chau etal. 
2015; Abrahart et al. 2012; ASCE 2000).  

The models and data used to simulate the rainfall- 
runoff process usually involve uncertainty, which to 
overcome such uncertainty, a combination of ANN and 
fuzzy system may be considered which benefits both 
ANN and fuzzy concepts via a single framework of so 
called ANFIS (Adaptive Neuro- Fuzzy Inference 
System) model. The merit of ANFIS for rainfall-runoff 
modeling has been reported by a few studies (e.g., 
Chang et al. 2017; Chang et al. 2016). The efficiency 
of artificial intelligence (AI) techniques like ANFIS 
and ANN may be altered if noisy time series and data 
are used as inputs (Sang et al. 2009). Since the 
performance of any data-driven model is sensitive to 
the quality of the used data, different methods have 
been proposed for data denoising purpose, e.g. Wiener 
filter and Kalman filter (Kalman 1960; Wiener 1949), 
which are appropriate for linear systems but sometimes 
inappropriate for non-linear hydro-environmental 
processes. When classic methods for modeling 
hydrological time series do not meet the practical 
needs based on their limitations exposing to non-
stationary characteristics and multi time scales, 
wavelet threshold denoising (WTD) method proposed 
by Donoho (1995) can be used as a reliable alternative. 
In hydrological practices, the WTD method is known 
more influential than conventional methods since it 
can contribute the illumination of the localized 

characteristics of non-stationary time series both in 
temporal and frequency domains (Jansen 2006). There 
have been only a few researches focusing on the use of 
wavelet based data denoising approaches in 
hydrological modeling (e.g., see Nejad and Nourani 
2012; Nourani et al. 2014). On the other hand in 
training phase of an AI model, the training data set 
includes a limited sample of all data, so a set of 
selected data can not reflect all possible patterns of the 
process (Zhang 2007). Jittered data for calibration of 
an AI model can enlarge the sample size of training 
data set by its supplementation using extra generated 
data which are similar to, but different from the 
original observed data.  

This can make it possible that the data are appeared 
more smoothly to an AI model and therefore enhance 
the model capability to learn the real patterns involved 
in the process (Zhang 2007). Furthermore, it can 
prevent over fitting of model by supplying extra 
constraints, and imposing the jittered data into the 
training patterns can lead to improvements of the AI 
modeling. Therefore, the jittered data obtained by the 
noise injection method can be a useful pre-processing 
technique for AI-based model building (Zur et al. 
2004; Zhang 2007). The selection of a suitable noise 
size to be injected to the original time series to create 
jittering data has not been well described in technical 
literature.  

Obviously the appropriate variance of noise should 
be a problem reliant as distinct time series may have 
different inherent noise levels. Consideration of high 
levels of noise can deform the underlying pattern while 
small noises might not have sufficient influence on the 
jittering performance. 

Most of the researches regarding the application of 
jittering data concentrate on classification problems 
and financial time series analysis and there is not any 
research in hydro-environmental modeling. The 
introduced data pre-processing approach in the present 
study is used for the first time in modeling of time 
series and especially in modeling of hydrological 
processes. Furthermore the impacts of denoising 
(smoothing) and noise injection (jittering) have been 
simultaneously investigated neither in hydrology nor in 
any other engineering fields. In the previous study 
(i.e., Nejad and Nourani, 2012), only data de-noising 
has been employed as data-preprocessing approach but 
here, both de-noising and jittering have been applied 
and examined via the modeling framework, as a new 
data-processing approach.  

Actually such data jittering can be used to improve 
the quantity of the training samples.Thus it is 
necessary to produce more researches on this filed and 
providing suitable solution to model hydro-
environmental phenomena which is addressed in this 
article. 
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MATERIAL AND METHODS 

The proposed hybrid model 

In the proposed method in this study first by applying 
wavelet based denoising approach on raw data, the 
outliers and systematic noises of time series are 
identified and shrunk to produce smooth hydrological 
time series. The magnitude of the shrinkage is 
controlled according to a threshold value. Then to have 
several time series with similar pattern to the original 
smoothed time series, jittered time series are generated 
by adding normally distributed noise time series with 
specified standard deviations to the smoothed time 
series of the hydrologic parameters. Finally, the 
produced jittered time series are imposed to the ANN or 
ANFIS forecasting model. In Fig. 1, schematic diagram 
of the proposed method is shown. 
 
Wavelet denoising procedure 

Wavelet data denoising method based on the 
thresholding to obtain denoised signals has been 
introduced by Donoho (1995). In this method, first a 
signal is decomposed into different sub-signals at 
different resolutions through controlling scaling and 
shifting coefficients by the wavelet transform. By this 
way, reliable localization properties which are caught in 
both time and frequency domains can be provided. 
Second a thresholding rule is applied on the sub-signals. 
The basic factors that must be respected in this method 
include: selection of a mother wavelet, decomposition 
level, thresholding rule and accurate estimation of 
threshold rule. For a mother wavelet ψ (t), the wavelet 
basis function can be considered as follow (Nourani et 
al. 2014): 

 

 

 
In this equation a,b and R indicate respectively scale 

and shift factors and the real number domain and 
 is the successive wavelet. The wavelet  

transform of a signal f (t)  L2(R) can be written as 
(Nourani et al. 2014): 

 

 

 

Which  is complex conjugate of (t). As it is 
clear from Eq. (2), the wavelet transform of a time 
series like f(t) decomposes it under various resolution 
levels. By applying successive wavelet transform, the 
main signal of f(t) is reconstructed using inverse 
transform using the wavelet coefficients of wf (a,b), as 
(Sang et al. 2009): 

 

The wavelet based thresholding technique as a 
widely used data denoising approach is conducted 
through three steps as (Donoho 1995): 
a) First a proper mother wavelet and a reasonable 
resolution level of N are chosen for the specified period 
of the study process to decompose the main time series  
 
to an approximation sub-series at level N and N detailed 
sub-series via wavelet transform . 
b) In the second step the absolute values of the detailed 
sub-series in resolution level of i di(t) (  = 1, 2,..., N) 
which are less than a specified threshold of , will be  
changed to zero, but if the values of detailed sub-series 
at the same resolution level exceed this specified 
threshold, their difference with the threshold value are 
considered as the modified values of detailed sub-series. 
Which this thresholding procedure can be 
mathematically shown by (Donoho 1995):  
 

 

 
where i refers to i th resolution level. Eq. (4) applies the 
thresholding at all resolution levels on detailed sub-
series, but the approximation sub-series is not included 
in this thresholding procedure.  

Figure. 1 Schematic diagram of the proposed model 
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Donoho and Johnstone (1995) proposed a formula to 
determine a general optimal threshold value for 
signals which are included white Gaussian noises as: 
 

 
 

where the number of samples in the noisy signal is n 
and  is the standard deviation of noises which may 
be obtained as (Donoho and Johnstone 1995): 
 

 
 

So that  represent detailed wavelet coefficient of 
main time series of first level. 
c) At the third step, the denoised (smoothed) sub-series 
can be reconstructed by modified detailed sub-series at 
all resolution levels and approximation sub-series at 
resolution level N through the inverse wavelet 
transform (Eq. 3).  

As it has been shown in Figure 1, the de-noising 
procedure is not applied on the approximation sub-
series in which this sub-series includes trend and 
effective large scale fluctuations of the process and are 
not affected by the de-noising of smaller scales sub-
series. Clearly by changing the decomposition level 
(N), the degree of such large scale fluctuations 
included in the unchanged approximation sub-series 
are changed. In this study general (universal) 
thresholding method (Eqs. 45) was applied for de-
noising procedure in which in this method the 
threshold is applied to all detail sub-series, however 
there are some other sophistical methods which as a 
level-based thresholding algorithms apply threshold 
only to some of detail sub-series (some of scale levels) 
rather to all scale levels (e.g. see, Nourani et al. 2014). 
 
Jittered data generation 

The process of generating random data with a specified 
statistical distribution usually consists of two steps. 
First random data with uniform distribution are 
generated, then these random numbers with uniform 
distribution are used to produce random numbers with 
an arbitrary distribution. Some methods such as 
reverse conversion method could be used in order to 
generate random numbers with such an arbitrary 
distribution. In this approach when random variable of 
x has a cumulative distribution of F( ), in this case 
u=F( ) will have uniform distribution of u(0,1) and 
vice versa if u~u (0,1), in this case,  ) will 
have cumulative distribution function of F and 
therefore, for generating random variable of  with 
distribution function of G we will have (Bowker & 
Lieberman 1972): 

        (7) 

 
Random numbers based on different distributions 

could be generated by softwares. In this study, 
NORMRND toolbox of MATLAB was used to 
produce normally distributed random time series of 
jittered noises with mean of zero and several small 
standard deviations consistent with the original time 
series of the hydrological parameters. 
 
Artificial Neural Networks (ANNs) 

Artificial neural networks (ANNs) are widely used for 
modeling and prediction of hydro- environmental 
processes. In this regard, feed forward ANN trained by 
the back-propagation algorithm including one input, 
one hidden and one output layers are more suitable 
option in compared to other ANN types in most 
engineering disciplines (ASCE 2000; Hornik 1988). 
This network has great ability to learn involved 
patterns within non-linear systems through only three 
layers. Neurons (nodes) in each layer are connected to 
all nodes in previous layer. Due to the feed forward 
framework, the path of signals is in forward direction 
and the outputs of input layer, create the input vector 
for hidden layer and similarly the outputs of the hidden 
layer make inputs for the output layer. The output 
value of a feed forward neural network with three 
layers can be obtained through the following equation 
(Kim and Valdes 2003): 

 

 
 

where Eq. (8) applies weight of Gji on a node in 
hidden layer which connects ith node of the input layer 
to the j th node of the hidden layer and bias of Gjo on 
the j th hidden node. fh is the activation function for all 
nodes of hidden layer, weight Gkj is applied on the 
output layer to the path where connects the j th node in 
hidden layer to the k th node of the output layer, G k 0 is 
the bias of the k th output node, f0 is the activation 
function for the output node, xi denotes to the input 
value of i th node in input layer and , y show 
respectively calculated and observed values for target 
(output) node. Finally, NN and MN indicate respectively 
the number of input and hidden layers, nodes. The 
different bias and weights applied on the nodes of 
hidden and output layers are tuned through the 
calibration phase of modeling. 
 
Adaptive Neuro-Fuzzy Inference System (ANFIS) 

ANFIS as a hybrid model is formed of a fuzzy system 
combined with a feed forward network (Jang et al. 
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1997). The fuzzy system is created according to the 
logic rules of conditions and outputs which may not be 
analyzed using conventional probability concept. A 
fuzzy system includes five units, fuzzification, rules, 
setting, inference engine and defuzzification. Among 
various fuzzy inference engines for fuzzy operation 
purpose, sugeno and mamdani schemes (Jang et al. 
1997) are most commonly used engines in which the 
sugeno engine was used in this study. To show typical 
mechanism of ANFIS to create target (output) function 
of f, for instance with two input vectors of x and y, the 
first order sugeno inference engine may be applied to, 
two fuzzy if–then rules as written (Aqil et al. 2007): 
 
Rule (1): If (x) is A1 and µ(y) is B1;  
then f 1 = p1x+q1y+r1 
Rule (2): If (x) is A2 and µ(y) is B2;  
then f 2= p2x+q2y+r2 

 
in which A1, A2 and B1, B2 are respectively the 
membership functions of inputs x and y. p1, q1, r1 and 
p2, q2, r2 are coefficient of target function. The ANFIS 
performs modeling through five layers. The first layer 
contains input neurons which provide membership 
degree of  for each input value. Considering Gaussian 
membership function for the i th neuron, its output 
could be expressed by following Eq.(Jang and Sun 
1995): 

 

In which  is output of i th neuron in k th layer 
(k=1 for the first layer) and {ai, bi, ci} are tunable 
premise coefficient. 
In the second layer, the output of each neuron will be 
the product of entering values to that neurons as (Jang 
and Sun 1995): 
 

 

Each neuron in the third layer, computes relative weight 
as (Jang and Sun 1995): 
 

 

The neuron i in the fourth layer computes ration of each 
rule with regard to the output of model in the following 
form (Jang and Sun 1995): 

 

 

The final output of ANFIS model is computed by a 
neuron in the fifth layer as (Jang and Sun 1995): 

 
 

The ANFIS is calibrated by a combined training 
approach to optimize both premise parameters set {ai, bi, 
ci} and consequent parameters set {pi, qi, ri}.This hybrid 
training algorithm includes both the gradient descent 
and least squared methods (Aqil et al. 2007).In the 
forward path of training, the outputs of neuron proceed 
ahead until layer four and the least squared method is 
used to estimate the consequent parameters. Thereafter, 
the errors are propagated in the backward path to update 
the premise parameters by using the gradient descent 
method. Jang and sun (1995) and Jang et al.(1997) may 
be referred for details regarding ANFIS model and its 
training algorithm. 
 
Study area and data 

The data used in this paper are from Oconee River 
watershed, located in southeastern United States at 
Georgia State, Baldwin County, Milledgeville station 
(Latitude 33°05'22, Longitude 83°12'56). The drainage 
area is 7637 square kilometers Fig. 2. The daily rainfall 
and runoff data for 15 years (from 2000 to 2015) which 
were used in this research are available at the United 
States Geological Survey website (USGS) (http: 
//water.usgs.gov/data/). The statistical parameters of the 
rainfall and runoff data such as the mean, standard 
deviation, maximum and minimum values (i.e., Xmean, 
Sd, Xmax and Xmin, respectively) are given in Table 1. 
Due to the training and verification goals, data set was 
divided into two parts. The first division as 70% of total 
data included the training set and the rest 30% data set 
was used for the verification purpose.

 
Table 1. Statistics of time series for calibration, verification and all  

 
 

 

 

 

Statistical 
parameters 

All data Training data 
Verifying data 

 
Runoff(m3/S) Rainfall (mm) Runoff(m3/S) Rainfall (mm) Runoff(m3/S) Rainfall (mm) 

Xmean 66.21 2.15 72.44 2.50 51.69 1.33 
Xmax 1500.79 103.88 1500.79 103.88 940.12 57.15 
Xmin 6.22 0 6.22 0 6.79 0 

Sd 101.98 7.74 110.61 8.47 76.29 5.57 
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Efficiency criteria 

In this study, to evaluate the accuracy of the proposed 
methodology and to compare different models, 
coefficient of determination (DC) and root mean square 
error (RMSE) were employed as Eqs (14) and (15), 
respectively (Nourani et al. 2009).  

 

 

 

where Oobsi, Ocomi, , and n are observed data, 
computed values, mean of observed data and number of 
observations, respectively. As much as RMSE and DC 
values are closer to zero and one, respectively accuracy 
of the model will be higher.  

The generated noise time series may include 
negative quantities, therefore in order to prevent the 
producing of negative hydrological data and to scale the 
data, the time series were normalized between 0.1 and 
0.9 by the Eq. (16) (Rajurkar et al. 2002): with regard to 
Eq. (16), Xi, Xmin, Xmax and Ni are observed variables, 
minimum and maximum values and the normalized 
variable, respectively.  

 
 

RESULTS AND DISCUSSION  

As the first step, for modeling of rainfall – runoff 
process, the raw data prior to apply the data pre- 
processing approaches were entered to the FFNN model 
which is the most common ANN for hydrological 
modeling and to ANFIS model, respectively. The used 
algorithm for training the FFNN was back propagation 
with Levenberg– Marquardt training scheme and 3 to 10 
neurons were examined for the hidden layer. No great 
improvement in model performance was found when 
the number of hidden neurons was increased from a 
threshold. In ANFIS modeling, Sugeno fuzzy inference 
system was considered and trained using hybrid 
optimization algorithm. The ANFIS model contains a 
number of rules with some membership function 
parameters. In the current study Gaussian membership 
function with 3 membership function was found to be 
appropriate for simulation of rainfall- runoff process via 
ANFIS. Five different combinations of input data for 
runoff prediction considered as follow: 
 

Comb. 1: Rt, Qt 
Comb. 2: Rt, Qt-1, Qt 
Comb. 3 : Rt,Rt-1, Qt-1,Qt 
Comb. 4 :Rt ,Qt-2,Qt-1,Qt 
Comb. 5 : Rt-1, Rt, Qt-2, Qt-1, Qt 
 

In all cases the output was the discharge at the next time 
step Qt+1 where Rt presents rainfall value at time step t. 
The results of ANN and ANFIS models with original 
noisy data are shown in Tables 23, respectively. It 
should be noticed that only the results of the best 
structures have been presented in the tables and 
numbering of a-b-c in neural network structure denotes 
to number of input layer, hidden layer and outputlayer 
neurons. 

 

 
Figure. 2 Oconee River watershed 
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Table 2. Results and structures of ANN model for the different input combinations 

Input Variablesa  
(rainfall and runoff) 

Network 
Structure 

Epoch 
RMSE 

(Normalized) 
DC 

 
Calibration Verification Calibration Verification 

Comb.1 (2-7-1) 30 0.038 0.028 0.58 0.50 
Comb.2 (3-3-1) 90 0.0314 0.0227 0.718 0.689 
Comb.3 (4-8-1) 50 0.0292 0.0205 0.867 0.753 
Comb.4 (4-8-1) 80 0.0289 0.0184 0.890 0.815 
Comb.5 (5-4-1) 40 0.033 0.0244 0.673 0.641 

 

Table 3. Results of ANFIS model for the different input combinations 

Input Variables MF 
RMSE 

(Normalized) 
DC 

 
Calibration Verification Calibration Verification 

Comb.1 Gaussian 0.0272 0.0181 0.753 0.737 
Comb.2 Gaussian 0.0216 0.0166 0.90 0.78 
Comb.3 Gaussian 0.0233 0.0180 0.845 0.743 
Comb.4 Gaussian 0.0246 0.020 0.792 0.684 
Comb.5 Gaussian 0.0261 0.021 0.760 0.658 

 
According to the obtained evaluation criteria, it is 

clear that inputs Comb. (4) and Comb. (2) could lead 
to better performance in ANN and ANFIS modeling, 
respectively and thereafter used for ANN and 
ANFIS modeling. The difference between these two 
combinations is in Qt-2, that ANFIS due to handling 
uncertainties, could lead to similar results to ANN 
but using one less input in comparison to ANN. 
Actually, although the training scheme is similar in 
both methods, in ANFIS method, fuzzy 
representation of data instead of crispy 
representation of data which is used by ANN, may 
lead to different outcomes for these two methods. In 
the next step of modeling, in order to eliminate the 
outliers and systematic large noises of the observed 
data, wavelet-based denoising approach was applied 
on raw data. Since the type of used mother wavelet 
and decomposition level can alter denoising

performance, wavelet denoising was performed and 
compared using Daubechies mother wavelets (Haar 
or Db1, Db2, Db3 and Db4) at two different 
resolution levels of 8 and 9 (Walker 1999). The 
reason for choosing these two resolution levels is 
that one year includes 365 days which is between 
two dyadic modes of 28 and 29, therefore these two 
possibilities focus on annual period intensity. The 
denoising procedure of hydrological time series was 
performed using different mother wavelets and 
decomposition levels of 8 and 9 and specified 
threshold obtained through equation 5, then the 
models were trained using such smoothed input 
combination set determined in sensitivity analysis 
step (Comb. 4 and Comb. 2 in ANN and ANFIS, 
respectively). The results of ANN and ANFIS 
modeling using denoised (smoothed) input data have 
been summarized in Tables 45, respectively.

 

Table 4. Results and structures of ANN modeling using denoised data (using input Comb.4) 

 

 

 

Mother 
Wavelet 

D.La 
Threshold 

(Normalized) 
Network  
Structure 

Epoch 
RMSE 

(Normalized) 
DC 

 Calibration Verification Calibration Verification 
Haar 8 0.107 4-4-1 100 0.0324 0.0185 0.873 0.814 
Db2 9 0.107 4-8-1 60 0.0286 0.0171 0.892 0.835 
Db3 8 0.107 4-8-1 80 0.0268 0.0167 0.90 0.841 
Db4 9 0.107 4-5-1 130 0.0226 0.0159 0.92 0.853 
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Table 5. Results of ANFIS modeling using denoised data (using input Comb.2) 

 

As it can be seen in Tables 25, the obtained 
results indicate improvement of about 5 % in both 
ANN and ANFIS modeling in verification phase 
when using smooth time series as inputs. The 
results show that both Db4 and Db3 mother 
wavelets could lead to reliable results. In the third 
step of modeling, several jittered input time series 
with similar pattern to the original time series were 
produced by adding normally distributed generated 
noises with zero mean and different standard 
deviations to the smoothed time series of the 
hydrologic parameters (obtained in second step of 
modeling). In this manner the time series would 
have unique and similar trend (approximation) to 
the original time series but with different stochastic 
terms represented by the added small generated 
noises. Therefore via the training phase of AI 
modeling, the AI model (ANN and ANFIS in this 
study) could see and learn different stochastic 
situations of process which in turn this could 
enhance the performance of modeling in the 
verification step (for the unseen data). For this 
purpose, normally distributed noise time series with 
mean of zero and standard deviations of 0.0001, 
0.001, 0.003, 0.005 and 0.01 (normalized value) 
were generated and injected to the smoothed 
hydrological time series (obtained in second step of 
modeling) and the AI modeling was performed by 
these jittered input time series. After try and error 
for several models, it was obtained that these five 
mentioned standard deviations of noise could lead 
to better performance in modeling and thereafter 
used for the modeling. In this stage, normally 
distributed noise time series with mean of zero and 
standard deviations of 0.0001, 0.001, 0.003, 0.005 
and 0.01 (normalized value) were generated and 
injected to the smoothed hydrological time series 
obtained of Db4 and Db3 mother wavelets at 

resolution levels of 9 and 8, respectively in ANN 
and ANFIS modeling. Then, according to the best 
input combination set determined in the first step of 
modeling (Comb. 4 and Comb. 2, respectively in 
ANN and ANFIS models), different input 
combinations with appropriate lag were produced. 
Therefore, the input combinations in ANN 
modeling were considered as: 
 

Comb. 1: Rt , Q'1t,Qt-2D,Qt-1D,QtD 
Comb. 2: Rt , Q'2t, Q'1t,Qt-2D,Qt-1D,QtD 
Comb. 3 :Rt ,Q'3t ,Q'2t, Q'1t,Qt-2D,Qt-1D,QtD  
Comb. 4 :Rt, Q'4t ,Q'3t ,Q'2t, Q'1t,Qt-2D,Qt-1D,QtD 
And for the ANFIS modeling as: 
Comb. 1: Rt , Q'1t, ,Qt-1D,QtD 
Comb. 2: Rt , Q'2t, Q'1t, Qt-1D,QtD 
Comb. 3 :Rt ,Q'3t ,Q'2t, Q'1t, Qt-1D,QtD  
Comb. 4 :Rt, Q'4t ,Q'3t ,Q'2t, Q'1t, Qt-1D,QtD 
 
where, QtD represents value of smooth time series at 
time step t, and Q't indicates the denoised-jittered 
time series.The indexes 1, 2, 3 and 4 indicate 
different generated noise (with same standard 
deviation) added to smoothed time series. For 
instance the original (Qt) and three samples of 
jittered time series generated by noises with 
standard deviation of 0.003 (Q'1, Q'2 and Q'3) are 
depicted in Fig. 3. The obtained results of modeling 
are shown in Tables 67 respectively for ANN and 
ANFIS models. It should be noticed that for each of 
noise time series with a specified standard 
deviation, different time series (up to four) were 
generated and different combinations (Comb., 1, 2, 
3,4) were produced but only the results of the input 
combination which led to best results have been 
presented in the Tables. 

 

Mother 
Wavelet 

Decomposition 
Level 

Threshold 
(Normalized) 

RMSE 
(Normalized) 

DC 
 

Calibration Verification Calibration Verification 
Haar 9 0.107 0.0205 0.0162 0.901 0.79 
Db2 8 0.107 0.0195 0.0158 0.921 0.805 
Db3 8 0.107 0.0191 0.0153 0.925 0.823 
Db4 8 0.107 0.0193 0.0154 0.923 0.815 
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Figure. 3 The original and three samples of generated jittred time series with noise standard deviation of 0.003 

 

  Table 6. Results of ANN model using the denoised-jittered data 

Standard 
deviation 
of noise 

Input 
Structure 

Network 
Structure 

 
Epoch 

RMSE 
(Normalized) 

DC 

 Calibration Verification Calibration Verification 
0.0001 Comb. 3 (7-8-1) 80 0.0217 0.0151 0.924 0.865 
0.001 Comb. 3 (7-8-1) 80 0.020 0.0134 0.935 0.892 
0.003 Comb. 3 (7-9-1) 50 0.0163 0.0115 0.95 0.921 
0.005 Comb. 3 (7-9-1) 50 0.019 0.0121 0.937 0.911 
0.01 Comb. 3 (7-7-1) 60 0.0226 0.0158 0.92 0.855 
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      Table 7. Results of ANFIS model using the denoised-jittered data 

Standard 
deviation of 

noise 

 
RMSE 

(Normalized) 
DC 

Input structure Calibration Verification Calibration Verification 
0.0001 Comb. 2 0.0189 0.0149 0.927 0.831 
0.001 Comb. 2 0.0175 0.0145 0.941 0.845 
0.003 Comb. 2 0.0161 0.0139 0.955 0.866 
0.005 Comb. 2 0.018 0.0148 0.936 0.837 
0.01 Comb. 2 0.0194 0.0152 0.922 0.825 

 
 

Based on the efficiency criteria, it is clear that inputs 
Comb. (3) and Comb. (2) could lead to better 
performance in ANN and ANFIS models, respectively 
including generated noise with standard deviation 0f 
0.003, so that the proposed methodology, in comparison 
to the situation in which the modeling was done by un-
preprocessed data, indicates an improvement of 13 and 
11percents in testing phase for ANN and ANFIS models 
respectively. The scatter plot of optimum ANN and 
ANFIS models in verification phase are shown in Figs. 
45. 

 
 

 

Fig. 4 The verification scatter plot of ANFIS results 
 
 
 
 

 
Fig. 5 The verification scatter plot of ANN results 
 

In order to evaluate the ability of proposed modeling, 
some comparisons with classic linear models of 
ARIMA (Salas et al., 1980) and MLR (Snedecor and 
Cochran, 1981) were also conducted in modeling the 
watershed rainfall–runoff process. ARIMA and MLR 
modeling have been done by denoised-jittered time 
series as well. The comparison results are presented in 
Table 8. The results indicate poor outcomes of ARIMA 
and MLR models with regard to the proposed model. 
This is due to the limited ability of linear models in 
modeling non-linearity and non-stationary time series 
and on the other hand, high dependence of data-driven 
models to quantity and quality of the used data. 
 
 

Table 8. Comparison of different rainfall–runoff modeling approaches 

Model 
RMSE 

(Normalized) 
DC 

Calibration Verification Calibration Verification 
ARIMA 0.0234 0.0195 0.836 0.751 

MLR 0.0305 0.0229 0.763 0.685 
ANN 0.0163 0.0115 0.95 0.921 

ANFIS 0.0161 0.0139 0.955 0.866 
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CONCLUSIONS  

In this study via data pre-processing techniques, 
the wavelet-based denoised-jittered data were 
employed in AI-based rainfall-runoff modeling. 
Accordingly, first it was tried to smooth the 
hydrological time series by eliminating the outliers 
and large noises of raw observed time series, which 
may be due to human or tool measurement error or 
systematic error. Then different training time series 
were generated by noise injection to the smoothed 
time series, and uesd to train ANN and ANFIS 
models for rainfall-runoff modeling. The 
comparison of results obtained using processed and 
unprocessed data, indicates the merit of applied data 
pre-processing approaches due to robust 
identification of hidden patterns in data, so that the 
developed models could simulate and predict runoff 
values with lower margin of error and higher 
confidence and the best results were achieved by 
employing the denoised-jittered data via producing 
more different training time series with the same 
pattern of original time series.  

For future study, it is recommended to examine 
the efficiency of the proposed data pre-processing 
method in rainfall-runoff modeling of other 
watersheds since it is expected that the merit of the 
method is more highlighted where the quality of the 
gathered data is blurred due to the technical 
limitations. 

Furthermore, it is suggested to evaluate the 
efficiency of the proposed method in modeling the 
process at other time scales and also for modeling 
other hydrological processes which may involved 
distinict noise level and pattern regarding to the type 
of process. 
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