
Krassanakis and Vassilopoulou 

Journal of Urban and Environmental Engineering (JUEE), v.12, n.1, p.3-14, 2018 

3

UEEJ
 

Journal of Urban and Environmental 
Engineering, v.12, n.1, p.3-14 

Journal of Urban and 
Environmental Engineering 

ISSN 1982-3932 
doi: 10.4090/juee.2018.v12n1.003014 

www.journal-uee.org

 
 

INTRODUCING A DATA-DRIVEN APPROACH TOWARDS 
THE IDENTIFICATION OF GRID CELL SIZE THRESHOLD 

(CST) FOR SPATIAL DATA VISUALIZATION: AN 
APPLICATION ON MARINE SPATIAL PLANNING (MSP) 

 
Vassilios Krassanakis1,2 and Vassiliki Vassilopoulou1 

1Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for 
Marine Research, Greece 

2School of Rural and Surveying Engineering, National Technical University of 
Athens, Greece 

 
Received 7 November 2016; received in revised form 10 January 2018; accepted 17 January 2018 

 

 
Abstract: Spatial data visualization techniques may have a great influence in several disciplines 

related to spatial management and hence decision-making process. Among them, 
marine spatial planning (MSP) constitutes an integrated procedure aiming at the 
optimal allocation of human activities in marine space. In MSP, mapping process 
referred either in human activities, marine ecosystems or indicative indices is based on 
the implementation of a grid approach. The present paper discusses some critical issues 
related to visualization procedure while a new data-driven approach is introduced 
towards the identification of grid cell size threshold. The proposed method gives a 
critical suggestion that may be easily extended in each field that considers this type of 
visualization for spatial data handling. 
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INTRODUCTION 

Spatial data visualization is considered one of the most 
important procedures in several scientific disciplines 
(e.g. environmental, education, historical research etc.) 
considering that it may reveal critical patterns. 
Especially, the interpretation of cartographic products, 
referred either to classical maps or spatial data 
infrastructures (SDIs), has a critical role in research 
fields where the research objectives are directly 
connected with decision making process either in 
scientific or political level. Hence, methodological 
approaches that provide critical indications about 
visualization tools and techniques are essential in order 
to support decision-making process (see e.g. Blasco et 
al., 2008).  

Among the several disciplines, Marine Spatial 
Planning (MSP) constitutes a process which results 
influence directly decision-makers and users (Gilliland 
and Laffoley, 2008). MSP is an integrated approach 
towards the achievement of ecological, social, and 
economic targets at the same time (Douvere, 2008). 
Basically, MSP is a practical tool which is used for the 
implementation of an effective management process of 
the entire ecosystem including the human dimension 
(Ehler & Douvere, 2009). The collection and mapping 
of geospatial data constitute a necessary step towards 
the practical implementation of MSP (Shucksmith & 
Kelly, 2014). More specifically, geospatial data are used 
in order to describe the spatial distribution of ecosystem 
components and human activities as well as to reveal 
possible patterns referred to discrete time periods (e.g. 
the spatial distribution of fishing effort, see Campell et 
al., 2014). The representation of spatial data distribution 
can be based on methods that include the harmonization 
of the available data (Tammi & Kalliola, 2014) as well 
as their categorization in representative classes.  

Data visualization has major importance in the 
practical implementation of MSP process as it 
highlights areas of special concerns (Longley and 
Lipsky, 2013). Additionally, mapping is not limited 
only to the visualization of data spatial distribution 
(considering also the variable of time) but it is also used 
to represent indicative indices that have significant role 
in the decision-making process. These indices are 
mainly related to the analysis and the visualization of 
spatial interactions (i.e. conflicts, synergies, neutral) 
among human uses (i.e. analysis of overlapping uses) 
(see e.g., Gramolini et al., 2013; Krassanakis et al., 
2015a) as well as to the quantification of cumulative 
impacts produced by human uses on marine ecosystems 
(see e.g., Halpern et al., 2008; Halpern et al., 2009; 
Korpinen et al., 2012; Micheli et al. 2013; Kelly et al., 
2014) or cumulative noise produced by specific human 
activities (e.g. shipping) (see e.g., Erbe et al., 2012).  

Spatial data management is supported by several 
GIS-based tools (Snickars & Pitkänen, 2009; 
Stelzenmüller et al., 2013). In a wide range of these 
tools (e.g. Marxan (Ball et al., 2009), EcoGIS (Nelson 
et al., 2009), GRID (Gramolini et al., 2013) etc.) the 
representation of spatial data is based on the 
implementation of a grid which is used in order to 
visualize either the presence/absence of an ecosystem or 
activity, or the level of their intensity. Despite the fact 
that several studies in MSP and general marine 
management follow grid approach for data visualization 
(e.g. Busch et al., 2013; Arkema et al., 2014; Álvarez-
Berastegui et al., 2014; Turner et al., 2015; Krassanakis 
et al., 2015b etc.) a conceptual framework that fully 
supports the adaptation in marine spatial data has not 
yet be described clearly, to the best of our knowledge. 

 One of the major issues in marine spatial data 
visualization is related to data collection and mapping 
accuracy (Shucksmith & Kelly, 2014); spatial accuracy 
is not the same for all data involved in the analysis 
while there are also cases that its value is unknown 
(Shucksmith et al., 2014). It also should be mentioned 
that several studies point out the need of high resolution 
data for the implementation of MSP procedures (e.g. 
Rengstorf et al., 2013). Therefore, it becomes obvious 
that any process of data visualization must be 
conformed to the existing uncertainties of the used data 
(Vassilopoulou & Krassanakis, 2016). Furthermore, the 
spatiotemporal nature of marine spatial data requires the 
use of effective cartographic tools for the 
implementation of mapping procedure.  

The aim of the present paper is twofold. Firstly, 
inspired of issues raised from practical implementation 
of MSP process, the paper aims to discuss some critical 
issues related to the visualization techniques in order to 
serve as a solid framework towards the effective 
execution of the procedure. Secondly, a novel method is 
introduced towards the establishment of optimal 
approaches of grid implementation for the visualization 
of spatial data and relevant indices used in spatial 
analysis studies. The proposed method is data-driven 
and considers the spatial accuracy of all available data 
that are involved in the analysis and aims to deliver an 
integrated methodological framework for the 
cartographic production of effective visualizations. An 
example using spatial data in marine space is presented 
in order to indicate the practical implementation of the 
proposed method. 
 
METHODOLOGY 

Nature of spatial data and their visualization  

Sea constitutes a real complex system which 
involves a huge variety of ecosystem components while 
several human activities and uses take place within it. 
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The study of functions related to marine environmental 
processes (e.g. the analysis of ecosystem’s 
vulnerability) is directly connected with the use of 
spatial data. The construction of SDIs constitutes an 
effective way to model and visualize elements of real 
world. The basis of 2D geospatial modeling requires the 
classification of geographic phenomena into three 
categories; points, lines, and areas. Additionally, the 
representation of geographic information can be based 
on 3D (i.e. planar and vertical dimension), 4D (i.e. 
planar, vertical, and temporal dimension) modeling.  
Generally, the development of SDIs allows the storage 
of spatiotemporal elements including several 
supplementary attributes that characterize them (e.g. 
indices). More specifically, the process of spatial data 
storing contributes to the organization of the databases 
into locational (geometric features), attribute (non-
geometric features), and temporal data (Kraak & 
Ormeling, 2011).  Both development and distribution of 
SDIs are considered very critical in order to produce a 
solid environment that allows the cooperation and 
interaction among the involved users (Rajabifard & 
Williamson, 2001). 

The management of spatial data is mainly based on 
the use of GIS environments as they support the 
operation of geospatial databases as well as the 
performance of several visualization techniques. The 
visualization of the marine environment (including also 
human activities) is implemented in the 2D space in the 
majority of related studies which means that data are 
represented as points, lines, and areas. Additionally, 
third dimension can also be presented in 2D 
visualizations (i.e. contours). Visual variables (Bertin, 
1967/1983) constitute the design elements for the 
development of several visualizations in 2D space. The 
original list of the design elements includes the 
variables of position, size, color value, texture 
(spacing), color hue, orientation and shape. These 
variables are used for the visualization of point, line, 
and area data in order to depict nominal, ordered, and/or 
interval/ratio differences. The function of the 
fundamental elements of cartographic visualization is 
presented in Fig. 1 through indicative examples using 
point, line, and area data.  

The representation of geographic information also 
needs the implementation of several classification 
methods (e.g. mean standard deviation, quantiles, 
natural breaks etc.) in order to produce visualizations 
that are based on the categorization of specific classes 
(e.g. classes that categorize the level of impact of a 
human activity on a marine ecosystem in low, medium 
and high values). Classification methods, which are well 
summarized in several studies (e.g.  Slocum et al., 2009; 
Krassanakis et al., 2013), must be considered and  
 

 
Fig. 1 The visual variables (Bertin, 1967/1983) used for cartographic 

visualization (image source: Krassanakis et al., 2013). 

 
 

adjusted according to the nature of the visualized 
geographic phenomena. 

Implementing a “grid approach” for data 
visualization 

In several disciplines where the spatial analysis for 
management purposes is one of the overarching goals, 
the visualization of spatial data is based on the 
implementation of a “grid approach”. This approach is 
referred to a specific type of data visualization where 
spatial data are described as Boolean (presence/absence) 
or intensity values using a grid. The constructive grid 
elements mainly consist of rectangles, while hexagons 
or randomized grid coordinates are also used in order to 
avoid artifacts that may be produced (White & Engelen, 
2000).    

The use of grid technique for spatial data 
visualization meets several advantages as well as some 
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limitations. Grid approach constitutes a simple way to 
manage and hence to visualize data of different nature 
serving as a solid framework for spatial data 
harmonization. More specifically, the method enables 
the comparisons of different layers and the evaluation of 
the “load” (expressed either as the intensity of a layer 
or as cumulative intensity of several layers) in each cell 
of the grid. Additionally, the use of grids for data 
visualization supports the development of robust data 
management platforms as it is compatible with both 
raster (expression as cell values) and vector (expression 
as attributes of point data) data. Therefore, the outcomes 
of grid implementation can be imported in GIS 
environments, either as standalone or WEB-GIS 
systems. Especially, in the case of raster data the 
outcomes can be easily supported from a huge variety of 
existing tools even of not specific ones (image viewers, 
web browsers etc.) while the compatibility is clearly 
enhanced in terms of computation efficiency (White & 
Engelen, 2000).  

Hence, the grid approach using rectangle cells has 
become a well accepted methodology and it is 
implemented in a wide range of spatial analysis studies 
referring either to marine or land management. The 
primary limitation of this method is that in its standard 
form it only allows 2.5D visualization (i.e. 2D 
visualization plus an attribute, e.g. spatial distribution of 
cumulative impacts). The use of the third dimension 
(i.e. using different cell heights) can also be used in 
order to extend the visualization capacity of this method 
(in this case the outcomes are visualized using 3D space 
environments). For the purposes of the present paper 
grid approach is referred to the implementation of a 
continuous 2D grid consisting of rectangle cells. 

As mentioned above, the most advantageous element 
of grid implementation is related to the harmonization 
of spatial data with different nature. Hence, this method 
can be performed for point, line, and area data. More 
precisely, as referred above the implementation of a grid 
with predefined cell size supports either the Boolean 
visualization of spatial data or their intensity (Fig. 2). In 
the case of predefined cell size, several issues related to 
the used values arise as indicated in Fig. 2. For 
example, in the case of point data the computation of 
intensity values can be based on the number of points 
inside a grid cell but the implementation of a 2D grid 
meets limitations if each point is related to other 
attributes (e.g. point data that indicate pollution spots 
can be connected with indices that express the level of 
pollution). In that case, the computation of cell values 
must be based on a combination of the number of points 
and the related attributes. The same issue is illustrated in 
the case that two different lines correspond to the area 
covered from only one cell. Additionally, the expression

of intensity value is much more complicated for line 
data as it requires the definition of the area covered 
from the two lines within the cell which is not happened 
in the case of points. Furthermore, as pointed out in Fig. 
2 using an example of area data the value of a cell is 
directly related to the presence of the specific layer 
within the specific cell which means that the expression 
of cell values is not corresponded to the area percentage 
that is covered within the cell. 
 

 
Fig. 2 Implementing grids with predefined cell size for the 

visualization of point, line, and are data expressed either as 
Boolean or intensity values. 
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The aforementioned examples are presented in order 
to highlight critical issues that may be raised during the 
implementation of a grid with predefined cell size 
especially in the case that distribution of spatial has not 
be taken into consideration. 
 
A data-driven approach    

The description for grid construction given in the 
previous section indicates that grid cell size seems to be 
the most crucial value related to the performance of the 
aforementioned methodology. In several studies, this 
value is defined according to specific standards or 
considering previous ones (see e.g. Dalton et al., 2010). 
Additionally, a critical issue related to marine spatial 
data refers to the existing spatial accuracy, either for 
ecosystem components or human activities, which in 
most of the cases is unknown. This is a type of 
uncertainty that must be taken into account in order to 
perform analyses that considers the existing accuracy of 
the available data.  

Many studies point out the emerging need of high 
resolution data for marine modeling purposes (e.g. 
Rengstorf et al., 2013). The original resolution of spatial 
data influences directly the selection of cell size during 
the implementation of the grid approach. Specifically, in 
the case of remote sensed environmental data, cell size 
can be defined according to the spatial resolution of 
used images (see e.g. Oppel et al., 2012). However, in 
many studies where raw data correspond to vectors with 
unreported spatial accuracy, the process of cell size 
selection is not clearly described. In the framework of 
the present paper, a new methodology is proposed 
towards the illustration of suitable techniques for data 
grid construction. The proposed method is based on a 
data-driven approach, which contributes to the 
identification of the minimum cell size that can be used 
in order to achieve data harmonization using grid 
visualization techniques. In other words, the introduced 
approach aims to deliver an objective method that 
indicates cell size threshold (CST) considering the 
spatial distribution of the used data.  

 

The conceptual framework  

In MSP process there is a clear need to use the best 
available data for the implementation of further 
analysis. As described above, despite the fact that the 
uncertainty produced by the several collection or 
production methods of spatial data is unknown in most 
cases, the density of the spatial distribution of vector 
datasets (points, lines, and/or areas) is specific. Hence, 
the computation of cell size can be based on the 
minimum value that describes the spatial distribution of 
the used dataset. In the case of point geospatial layers,  

 
 

 
Fig. 3 Line and area vector data can be translated into points 

allowing the definition of grid cell size considering the 
minimum value of distance for all point combinations. 

 
this threshold can be defined considering the minimum 
distance which is reported after the computation of the 
distances for all points’ combinations. A safe selection 
of CST can be based on values smaller than the half 
value of the minimum reported distance. In this way, the 
maximum number of points within each grid cell 
corresponds to value one. Note, that this is quite 
important as the values that are used for grid 
visualization can be based on any other attribute value 
related to this point.  An interesting point of this 
approach is related to its extension in line and area types 
of datasets. Specifically, according to the fundamental 
nature of vector data, line vectors can be described as an 
amount of successive vertices. Therefore, a line dataset 
consists of an amount of points. Additionally, area data 
are characterized by their outline. Hence, both area and 
line vectors can be translated into layers of point data 
where the definition of cell size can be based on the 
computation of all combined distances as described 
above (Fig. 3).  

In order to achieve an integrated approach that takes 
into account all available datasets that are used for 
further analysis the computation of CST can be based 
on the consideration of the minimum distance produced 
for each dataset. Specifically, the computation of CST 
can be based on the formula (Eq. 1) below: 
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In this way, the value of the final CST for grid 

construction is a result of all available datasets. 
Obviously, for cases where very dense datasets are used, 
the aforementioned process results to a grid with small 
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Fig. 4 An abstract representation of the proposed method for the 

generation of the final grid. The computation of CST 
indicates the minimum cell size considering spatial data with 
different nature. 

 
 
grid size. Therefore, considering that in some cases the 
cell size is predefined in larger values (e.g. 1x1 km) (i.e. 
when the implementation of specific standards is 
required), the final value that corresponds to each cell of 
a predefined grid can be computed on the basis of the 
constructed grid (based on the computation of CST). 
Specifically, the implementation can be executed using 
similar interpolation methods applied in image 
resampling (“downsampling” techniques are considered 
to be appropriate for the specific case as the size of final 
cell is mainly bigger than the value of CST , see also 
Sachs, 2001) as the final output of the described method 
is compatible with raster data (see previous section). 
The proposed procedure is presented as an abstract 
diagram (Fig. 4). 
 

CASE STUDY 

A case study is presented for the application of the 
introduced methodology aiming to the identification of 
CST for the visualization of specific human activities 
that take place within the examined area. The human 
activities that are used for the analysis are characterized 
by different nature of data (points, lines, and areas), 
spatial and temporal distribution. Hence, the 
implementation of the present analysis illustrates how 
different types of data may be combined in order to by 
analyzed using an integrated approach.  

 

Marine region & activities description 

The case study is implemented in a marine region of the 
Northern Ionian Sea. Specifically, the examined area 
includes the marine space around the Diapontia 
complex of Islands (Othonoi, Erikoussa, & Mathraki) 
and the northwestern part of Corfu Island covering an 
area of approximately 671 km2 (Fig. 5). Three different 
human activities are used for the analysis including 
areas of fishing activity (Kavadas & Maina, 2012), 
 

 
Fig. 5 The examined case study includes the marine region around 

Diapontia complex of Islands and the northwestern part of 
Corfu Island. 

 
 

shipping lanes (Vassilopoulou et al., 2015) and 
suggested places for offshore wind farms (OWF) 
placement (Regulatory Authority of Energy): 
 
(a) Fishing activity is presented as 5x5km rectangles 

(area type of data) and refers to the fishing season 
2010 - 2011 (October 2010 - May 2011).  

(b) Shipping lanes are presented as line type of data. 
Yearly and seasonally (referred to the months 
October and May) shipping lanes are used for the 
present analysis. 

(c) OWF are presented as point type of data (examined 
as permanent points for the performance of the 
analysis). 

 
Method implementation 

The implementation of the analysis refers to the fishing 
season 2010-2011 including also the suggested OWF 
places (OWF dataset is used in order to include also a 
point type dataset in the analysis). The introduced 
method towards the identification of a CST value is 
executed in successive and discrete steps;  
(a) Spatial datasets are imported into a Geographic 

Information System (GIS) environment (ESRI 
ArcGIS®).  

(b) Vertices of line and area (polygon) types of datasets 
are exported using standard GIS functions.  

(c) Spatial coordinates of all points which connected 
each human activity are exported in order to 
compute CST value.  

The transformation of spatial data during the execution 
of the methodological steps is also presented through a 
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flow diagram referring to a specific time snapshot (Fig. 
6). The spatial distribution (during all steps) of all 
datasets within the examined period is also visualized 
per minimum time unit (Appendix 1). Minimum time 
unit refers to a period of a month; this value is defined 
according to the minimum period for which spatial 
information is available. 

The computation of CST is based on all exported 
point datasets referred to the whole examined time 
period for each human activity. For the practical 
implementation of the procedure, a computer script is 
developed using the scripting language of MATLAB 
from MathWorks® in order to support the automation 
of the procedure and the calculation of related statistics 
(see also the last section). The developed script for the 
calculation of CST and related statistics is presented in 
Appendix 2. 
 

Case study results 

The calculation of CST value is based on the point 
datasets exported from GIS environment. Specifically, 
for the execution of the related computations the spatial 
coordinates (point data) of OWF and shipping lanes 
spatial layers are used. Point data produced by fishing 
activity are not taken into consideration as mapping 
resolution is specific (5x5km for the data referred in the 
case study) and hence it does not affect the process of 
minimum value computation. Despite this fact, fishing 
activity data define the minimum time threshold (here 
referred to the period of a month) that further analysis 
may be subdivided. Obviously, the final CST value that 
is calculated from the other activities must be compared 
with the cell size that fishing activity data are presented 
in order to select the minimum value of cell size. 
Therefore, fishing activity data are used in the present 
case study in order to include an example of area type of 
data and to reveal that the approach must be simplified 
in some cases, especially when spatial data are available 
using grid approach. Additionally, fishing activity data 
are considered very critical during the implementation 
of MSP process as they constitute one of the main 
human activities that may affect the ecosystem and 
produce conflicting interactions with other ones. For 
this reason, this type of data which also are mainly 
presented using this type of visualization, must always 
be considered in MSP studies.  

For the performance of the analysis, the minimum 
value of k parameter is used (k=2) while zero distances 
are not considered. CST value corresponds to the 
minimum reported distance reported for all point 
datasets. Additionally, standard statistics (number of 
points and non zero calculated distances; minimum, 
maximum and average of non zero distances as well as 
its  standard deviation)   values  are  also  calculated  for 

 
Fig. 6 Spatial transformations of all datasets for a specific time 

snapshot towards the identification of CST value. All spatial 
datasets are transformed in points. 

 

 
OWF and shipping lanes point spatial layers and 
presented in Table 1. These statistical values are 
computed in order to demonstrate the numerical 
characteristics that characterize the used datasets as 
well as to give an impression of the computational 
load needed for the execution of the required 
analysis. 

CST value corresponds to the half (k=2) of the 
minimum distance (i.e. approximately equal to 4.33m) 
which is reported in the point dataset of shipping lanes, 
which value is obviously much more greater than the 
cell size of fishing activity. This result indicates the 
minimum cell size value that can be used in order to 
visualize the specific spatial data.  
 

DISCUSSION AND CONCLUSION 

The process of spatial data visualization is 
considered very important for the implementation of the 
MSP procedures considering that its interpretation has a 

Table 1. Statistics produced after the performance of required 
computations using the point dataset of OWF and 
Shipping Lanes towards the identification of CST value. 

 Case study statistics 
 OWF Shipping Lanes 
Number of points 220 230 
Number of calculated 
distances (non zero)(m) 

48180 52670 

Minimum distance (m) 93.74 8.65 
Maximum distance (m) 22156.25 29311.34 
Average distance (non 
zero) (m) 

9173.77 11697.86 

Standard deviation of 
average (m) 

5261.4 6114.05 

Number of points 220 230 
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direct influence in the decision making process. In the 
framework of the present paper, specific cartographic 
rules and alternative approaches for spatial data 
visualization are presented in order to serve as guide for 
MSP studies. Among the several techniques, grid-based 
visualizations have a dominant role in MSP for the 
presentation of spatial data and/or related indices with 
spatial characteristics. For the purposes of the present 
work, a simple method is introduced aiming to provide a 
data-driven approach towards the identification of a 
threshold value for cell size selection in grid-based 
visualizations considering the “spatial status” (in terms 
of constructive elements) of each used spatial dataset 
and allowing the process of spatial data harmonization 
through an integrated approach that considers all type of 
spatial data. Therefore, the principal aim of the 
discussed method is to provide a critical suggestion for 
planners and map makers towards the construction of 
eligible cartographic products related to MSP. 

Additionally, the calculated value illustrates the 
accuracy that can be achieved based on a specific 
dataset which is independent of the scale of analysis. In 
other words, the provided suggestion is not connected 
with the selected scale of the marine spatial plan but it 
indicates the finer scale that visualizations and hence 
further analysis (computation of overlapping scores, 
environmental impacts etc.) may be performed.  

A case study is also presented in order to 
demonstrate the performance of the approach. The 
implementation concludes to the minimum value of cell 
size that can be used for grid construction. At this point, 
it is important to mention that the final selection of the 
grid cell size directly influences the final results in 
terms of eligibility as well as the size of the produced 
dataset.  In any case, the produced method may be 
imported in any GIS software or in specific 
ecological/conservation software (e.g. conservation 
planning software). Additionally, the source code for 
the execution of the implemented method is freely 
distributed providing a prototype tool for further 
development and/or adaptation in other case studies.   

The practical implementation of the introduced 
method requires the computation of all distance 
combinations among points characterize each used 
dataset. This fact means that, in the case of very large 
datasets, the execution process may be quite heavy in 
terms of processing capacity. For example for the 
computational execution of all distance combinations 
for the present case study the required time corresponds 
to approximately 14 seconds using a regular computer 
(Intel Core i5, 3.40GHz 3.40GHz, 4.00GB RAM, 64bit 
Windows 8.1) and executing the script in MATLAB 
2013a edition. Obviously, this time may increase in 
larger, in terms of number of points or number of spatial 
layers, datasets. However, the proposed method can be 

easily extended considering more efficient ways of its 
implementation (e.g. using different programming 
environment/language and/or identifying methods that 
decrease the number of needed computation for the 
calculation of CST value). 

The performed analysis indicates the limit value that 
is able to produce a visualization result that supports the 
finer scale of a spatial plan. Obviously, using greater 
values of cell sizes in the procedure directly affects the 
level of the final visualized information.  Hence, the 
present paper is giving critical indication in decision-
making process during the practical implementation 
MSP where management approaches may be refer from 
specific spatially-managed areas (e.g. Marine Parks) to 
marine regions with wider administrative boundaries. 

The present paper is a first attempt to describe issues 
raised during the visualization process as a part of the 
practical implementation of MSP procedures. The 
proposed method serves as a critical indication which 
may be easily extended in other disciplines related to 
spatial analysis where grid based visualization is 
considered appropriate for further analysis. The present 
approach contributes to the typical 2D type 
representation of the available spatiotemporal 
information. In a next step, except from the several 
methods that have been developed for the 2D 
representation of time in conjunction with spatial 
information (e.g. multiple static maps, cartograms, 
space-time cube etc.) (see also Kraak, 2014), 
cartographic animations may be also involved in 
visualization process to support visualization in MSP 
procedures.   

In MSP, and generally in studies related to marine 
research, the visualization of spatiotemporal data that 
describe either human activities (e.g. Le Guyader et al., 
2013) or ecosystem components (e.g. Zheng, 2013) is 
considered very important as it may indicate spatial 
patterns occurring over time. Spatiotemporal 
information may be presented as a sequence of static 
maps each of them visualize the footprint of a specific 
time period (e.g. fishing activity). Extending this 
approach, cartographic animations (animated maps or 
animations) can be produced by using as indicative 
frames the static maps that referred to specific temporal 
scales. Cartographic animations constitutes a modern 
approach as it is fully compatible with the use of digital 
monitors (e.g. in personal computers, mobile phones 
etc.) for data visualization and the new trends of web 
cartography (Neumann, 2012; Köbben et al., 2012).  
Cartographic animations are characterized by the 
existence of motion which is used in order to visualize 
spatial differences over time (Slocum et al., 2009). In 
the case of animated maps the original list of design 
variables for static maps (i.e. visual variables) is 
extended (DiBiase et al., 1992; MacEachrean, 1995). 
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Specifically, the additional design tools in animated 
mapping include the variables of duration, rate of 
change, order, display date, frequency and 
synchronization while more information about the 
function of design variables in animated mapping is 
cited in previous studies (MacEachrean, 1995; Kraak & 
Ormeling, 2011; Slocum et al., 2009; Kraak, 2014).  
Concluding, it is very important to mention that for 
MSP must always be very critical to take the advantages 
from the outcomes produced in cartography and spatial 
science towards the generation of effective 
visualizations that really contribute to the correct 
interpretation of planners and decision-makers. 
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APPENDIX 1 

 
 
APPENDIX 2 

Main MATLAB script for the computation of CST and related statistics (The modification of the imported files 
allows the adjustment in other case studies): 

%import data as points 
fprintf('Loading OWF...\n'); 
OWF=load('OWF.txt'); 
fprintf('Loading Shipping Lanes (yearly)...\n'); 
ShipLanes_yearly=load('ShipLanes_yearly.txt'); 
fprintf('Loading Shipping Lanes (seasonal)...\n'); 
ShipLanes_seasonal=load('ShipLanes_seasonal.txt'); 
%integrate data of seasonal and yearly shipping lanes 
ShipLanes=[ShipLanes_yearly;ShipLanes_seasonal]; 
fprintf('-Computing OWF distances...\n'); 
OWF_distances=all_distances(OWF);  
OWF_distances=OWF_distances(:,3); 
fprintf('-Computing Shipping Lanes distances...\n'); 
ShipLanes_distances=all_distances(ShipLanes);  
ShipLanes_distances=ShipLanes_distances(:,3); 
fprintf('-Defining grid size...\n'); 
OWF_min=min(OWF_distances(~~OWF_distances)); 
ShipLanes_min=min(ShipLanes_distances(~~ShipLanes_distances)); 
min_values=[OWF_min,ShipLanes_min]; 
%compute grid size(Grid_Size) 
k=2; 
Grid_Size=(1/k)*min(min_values); 
fprintf('\n'); 
fprintf('Grid size(k=2): %.2f m',Grid_Size) 
fprintf('\n\n'); 
fprintf('End of computations\n'); 
fprintf('------------------------------------------\n') 
fprintf('Calculate Data Statistics\n\n') 
%OWF 
%number of points 
OWF_n_points=size(OWF); 
OWF_n_points=OWF_n_points(1,1); 
fprintf('OWF number of point data: %.f\n',OWF_n_points) 
%number of distances (non zero) 
OWF_n_dist=length(OWF_distances); 
fprintf('OWF number of calculated distances (non zero): %.f\n',OWF_n_dist) 
%min distance 
fprintf('OWF min distance: %.2f m\n',OWF_min) 
%max distance 
OWF_max=max(OWF_distances); 
fprintf('OWF max distance: %.2f m\n',OWF_max) 
%average distance (non zero) 
OWF_average=mean(OWF_distances); 
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fprintf('OWF average distance (non zero): %.2f m\n',OWF_average) 
%standard deviation in distances 
OWF_std=std(OWF_distances); 
fprintf('OWF standard deviation of average (non zero): %.2f m\n',OWF_std) 
fprintf('\n') 
%ShipLanes 
%number of points 
ShipLanes_n_points=size(ShipLanes); 
ShipLanes_n_points=ShipLanes_n_points(1,1); 
fprintf('ShipLanes number of point data: %.f\n',ShipLanes_n_points) 
%number of distances (non zero) 
ShipLanes_n_dist=length(ShipLanes_distances); 
fprintf('ShipLanes number of calculated distances (non zero): %.f\n',ShipLanes_n_dist) 
%min distance 
fprintf('ShipLanes min distance: %.2f m\n',ShipLanes_min) 
%max distance 
ShipLanes_max=max(ShipLanes_distances); 
fprintf('ShipLanes max distance: %.2f m\n',ShipLanes_max) 
%average distance (non zero) 
ShipLanes_average=mean(ShipLanes_distances); 
fprintf('ShipLanes average distance (non zero): %.2f m\n',ShipLanes_average) 
%standard deviation in distances 
ShipLanes_std=std(ShipLanes_distances); 
fprintf('ShipLanes standard deviation of average (non zero): %.2f m\n',ShipLanes_std) 
fprintf('\n') 
fprintf('End of report\n') 
 
The variable of Grid_Size corresponds to the value of CST. 
Supplementary MATLAB functions for the execution of the main script: 
Function to calculate the Euclidean distance between two points 
 
function d=euclidean_distance(x1,y1,x2,y2) 
d=sqrt(((x2-x1)^2)+((y2-y1)^2)); 
end 
 

Function to calculate all possible distances among the existing points of the dataset 

function distances=all_distances(data) 
n=size(data); 
n=n(1,1); 
distances=[]; 
for i=1:n 
    for j=1:n 
        if j~=i            
distances=[distances;[i,j,euclidean_distance(data(i,1),data(i,2),data(j,1),data(j,2))]];             
        end 
    end 
end 
end 
 


