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Abstract: The use of mathematical models in environmental studies allows significant scientific 

contributions to the physical planning of an area, since they help to understand the 
impact of changes in land cover and predict future trends of changes in ecosystems. 
The study area includes portions of the municipalities of Duque de Caxias, Nova 
Iguaçu, and Belford Roxo, located in the state of Rio de Janeiro, Brazil, and aims to 
carry out experiments in land cover changes in the medium-term (10 years) within the 
catchment area of ORBEL pipelines. The modeling performed in this study was 
developed using the software Dinamica EGO. For model calibration, we used the 
weights of evidence method. Positive values foster certain transitions, while negative 
values indicate low probability of transition. Model validation was executed by means 
of the fuzzy similarity method using exponential decay. The results show that for the 
study period (1998-2010) the rate of change for the transition of the class 'others to 
woody vegetation' is much higher than for the other class transitions observed in the 
same periods. One annual land cover scenario was generated for the year 2020. The 
scenario indicated the growth of suburbs near the ring road around Rio de Janeiro, 
especially in the municipality of Duque de Caxias. 
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INTRODUCTION 

In 2016, the Brazilian pipeline infrastructure was 
composed of 610 ducts intended to carry petroleum, 
derivatives, natural gas and other products. The 
combined length of these ducts was 19 717 km, divided 
into 14 256 km for transport, and 5461 km for transfer. 
Extending 11 696 kilometers, 110 ducts were to carry 
natural gas. For derivatives, there were 429 ducts, 
totaling 5962 km. The other 32 ducts, 1985 km long, 
were intended to carry petroleum. The remaining 77 km, 
consisting of 39 ducts, were reserved to carry other 
products such as ethanol and solvents (ANP, 2017). 

These ducts are essential for the energy supply chain 
in Brazil and are a vital connection between refineries, 
power plants and distribution centers. 

Pipelines are an efficient and safe vehicle for the 
transportation of volatile or flammable substances that 
have the potential to cause damage to the neighboring 
population and the environment. The variety of terrain 
that the pipeline network goes through, such as densely 
populated areas, mountain regions and river crossings, 
make it more vulnerable to accidents. Therefore, 
obtaining information on the pipeline network status 
represents a fundamental role in the operation of 
pipelines, not only for the purpose of maintaining 
operational efficiency, but also to minimize the risks 
associated with possible accidents, like the disruption of 
the duct due to landslides or collapsing mass blocks, 
causing harm to humans and the environment. 

Besides the risks associated with the physical 
environment, which could lead to disruption of the 
ducts, there is also the risk associated with human use 
and occupation, both resulting from urban and rural use, 
which implies buildings, streets, people and machine 
traffic around these installations. 

Although pipelines are cited in literature as one of 
the safest means of carrying hazardous substances (Choi 
et al. 2003; Papadakis, 2000), considering the accidents 
associated with road or rail transportation, pipeline 
failures can occur and sometimes cause catastrophic 
consequences, therefore, the elaboration of studies 
regarding the prevention of accidents has become 
increasingly necessary. 

The growing demand for energy and growth of 
metropolitan areas has resulted in more people living 
near pipelines. Thus, public safety in areas that cross 
over pipelines is a problem, and it may become more 
frequent, with population growth and the expansion of 
pipeline networks in the country, which is still relatively 
small, taking into account the size of the Brazilian 
territory. 

Several factors are associated with urban growth: 
social, economic, transportation, communication, 
migration and public policies, among others. The study 

of urban growth factors and their driving forces is a 
complex activity, and requires sophisticated methods 
and tools (Aljoufie et al., 2013). 

In this context, modeling, especially if done in a 
spatially explicit form, is an important technique for the 
generation of alternative scenarios of future changes in 
land cover (Perez-Vega et al., 2012) and therefore, will 
be an important contribution to the study of changes in 
the pipeline surroundings, which can cause substantial 
pressure on them. 

Despite the flaws in spatial modeling in the past 
(Lee, 1973), in recent decades, increases in 
computational capacity, the increased availability of 
spatial data, and the need for innovative planning tools 
to help support decision making meant that there was a 
restoration of this type of modeling (Brail and 
Klosterman, 2001; Geertman & Stillwell, 2002). 

These models include the development of new 
computational methods, including multivariate and 
logistic regression, exploratory spatial data analysis, 
spatial regression and hybrid geospatial approaches 
(Zeng et al., 2015), micro-simulation, e.g. based on 
agents and cellular automata, which shows the potential 
for representing and simulating the complexity of the 
processes involved in the dynamic space and land use 
and land cover changes. 

The dynamic simulation model of land cover used in 
this study was implemented in the software Dinamica 
EGO. Dinamica EGO is a model for simulation 
explicitly for spatial landscape dynamics, which is 
based on the paradigm of cellular automata. It brings 
together the functions of transition based on multi-scale 
neighborhoods, the concept of phases using a stochastic 
process of simulation in multi-steps, spatial feedback 
from calculations of dynamic variables, a component 
that directs the expansion of road networks, and 
application of logistic regression (Soares-Filho et al., 
2001, 2002) or weights of evidence (Almeida et al., 
2003) to calculate the probability maps of transition 
using the information stored in a GIS (Soares-Filho et 
al., 2003).  

The purpose of this paper is to simulate urban 
expansion, creating a scenario of land cover for the year 
2020, for the selected range of ORBEL pipelines using 
weights of evidence to calibrate the model and cellular 
automata. 

 
The study area and the ORBEL oil pipeline 
The state of Rio de Janeiro is located in the southeastern 
region of Brazil and is the largest oil producer in the 
country, where the Campos Basin is located, one of the 
regions of greater oil production from deep waters in the 
world. 

The study area is approximately 97 km2, 
encompassing portions of the municipalities of Nova 
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Iguaçu, Belford Roxo and Duque de Caxias, located in the Metropolitan Region of Rio de Janeiro (Fig. 1). The 

 
Fig. 1 Study area. 

 
 
municipality of Belford Roxo, although not crossed by a 
pipeline, was also considered in this article because we 
consider both areas of influence on the pipeline: the area 
of indirect influence, which is real or potentially subject 
to indirect operational impact of the pipeline, including 
a 5 km strip of land on each side of the duct, and also 
the area of direct influence, which is that subject to 
direct operational impacts impact of the pipeline and 
includes a 400 m strip of land (or right of way) on each 
side of the duct. 

The municipalities in the study area are among the 
most populous in Brazil and present 
socioeconomic dynamics accelerated by the presence of 
large industrial parks and proximity to the city of Rio de 
Janeiro. 

The topography of the area varies between 1 and 326 
m, with slopes ranging from mild to sharp (0° - 78°). In 
lithological terms, there is an occurrence of 
Fluviolacustrine deposits, Cretaceous/Tertiary alkaline 
rocks of the Tinguá Alkaline Suite and granitoids of the 
Serra dos Órgãos Unit and Santo Aleixo Unit. 

The ORBEL pipeline first began operating in 1968, 
linking the Terminal Campos Elíseos or the refinery 
Duque de Caxias (REDUC) in Rio de Janeiro, to the 
Gabriel Passos refinery (REGAP) in the city of Betim - 
Minas Gerais state. This duct transports clear petroleum 
derivatives (gasoline, diesel oil, naphtha, cracked 
naphtha, and recycled light oil) with a capacity of 6,000 
m3/day. The ORBEL 1 pipeline has a diameter of 18 
inches and a depth of approximately 1 - 1.5 m, it is 362 
km long, crossing a total of 24 municipalities. In 2010, 
according to the IBGE (2010) the total population of 
these municipalities was 3 006 866 habitants, 55.8% in 
the state of Rio de Janeiro and 44.2% in the state of 
Minas Gerais. 
 
Weights of evidence modeling 

Calculation of transition rates 

For the determination of the global rates of land cover 
change, throughout the whole simulation period, we use 



Delaneze and Riedel 

Journal of Urban and Environmental Engineering (JUEE), v.12, n.2, p.277-286, 2018 

280

a cross-tabulation, whose output is called in Dinamica 
EGO unitary transition matrix. The transition matrix, 
which corresponds to the Markov chain, describes a 
system that changes in discrete intervals of time in 
which the value of any variable in a given period of 
time is the sum of the fixed percentages of values of all 
variables in the preceding time step (JRC & ESA, 
1994). 

Since the matrix elements are not negative, and the 
sum of elements in each line is equal to 1, each matrix 
element is called a probability vector, and the matrix P 
is a stochastic matrix or probability, according to 
Equation 1 (Judge & Swanson, 1962). 
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 (1) 

 
where the columns represent the probabilities of a 
determined state i remain in the same state or move to 
state j during the time interval of t  t + v. Using the 
coverage maps from the start and end time of each 
period, matrixes were calculated in Dinamica EGO, of 
global and annual transition, and for the generation of 
this last one, the method proposed by Bell and Hinojosa 
(1977) was used, based on eigenvalues and eigenvectors 
of the global matrix, according to Eq. 2. 
 

1
1

..  HVHMT n
annual

 (2) 

 
where MTannual is an annual matrix of land cover 
transitions, H are the eigenvectors of the global matrix 
of transitions, V are the eigenvalues of the global matrix 
of transitions, n is the annual number of steps within the 
total period examined, H-1 is the inverse matrix of 
eigenvectors of the global matrix of transitions. 

 
Model Calibration 

The calibration of the model aims at selecting the best 
set of variables that attempts to explain the changes in 
land cover that occurred in a given period. For this 
purpose, we use the method of weights of evidence, 
based on the theorem of conditional probability of 
Bayes (Bonham-Carter, 1994). This method uses the 
Bayesian probability model and is used to assess the 
mineral potential (Bonham-Carter et al., 1988, 1989, 
Ford and Blenkinsop, 2008; Benomar et al. 2009; He et 
al., 2010). For changes in land cover, this method 

assesses the probability of an occurring event, such as 
the alteration of a class (eg. cover of ‘woody vegetation 
from others’), since there is evidence (e.g. slope) that 
this has already occurred. 

In weights of evidence, the effect of a spatial 
variable in a transition is calculated independently from 
a combined solution. The weights of evidence represent 
each influence of a variable on the spatial probability of 
a transition i ⇒ j (Soares-Filho et al., 2009) and are 
calculated according to Eqs 34. 
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since O{D} and O{D/B} are the odds, respectively, to 
occur prior to the event D and D occur as a spatial 
pattern B. W+ is the positive weight of evidence of 
occurrence to event D as a spatial pattern B (Bonham-
Carter, 1994; Soares-Filho et al., 2003). The posterior 
probability of a transition i⇒j, given a set of spatial data 
(B, C, D ... N), is expressed as Eq. 5. 
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While the negative weight of evidence (W-) is 

calculated according to Eqs. 67. 
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To test the significance of the association between 

the occurrences of transitions, related to land cover 
change, each one of the defined intervals for the 
variables, the measure of contrast between the positive 
and negative values of the weights of evidence, was 
used, calculated by Dinamica, whose formula is given 
by: 
 

C = W+ - W- (8)
 

This measure is considered statistically significant, 
with a confidence interval of 95% if |C|> 1,96 s(C), 
being that the variance of the contrast, S2 (C), is 
determined by (Goodacre et al., 1993): 
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Weights of evidence are applied in Dinamica EGO 

after the categorization of the maps of continuous 
variables, like the maps of distances. In this process, the 
preservation of the data structure is essential. For this 
purpose, the Dinamica EGO uses a method adapted 
from Agterberg & Bonham-Carter (1990) and Goodacre 
et al. (1993), in which intervals are calculated according 
to the data structure. Afterwards, intervals of 
categorization are applied, for the calculation of the 
weights of evidence. Positive values are obtained for 
variables that favor determined transition, while 
negative values indicate low probability of transition, 
and values close to zero are obtained for variables that 
have no effect on the transition. 

Among the advantages of using the method of 
weights of evidence, Bonham-Carter (1994) points out: 

1. Is not restricted by assumptions of parametric 
statistical methods, which are often violated by the 
data space. 

2. It is a simple and objective method, since it uses 
only the result of the cross-tabulation between map 
changes from a cross of multitemporal maps - and the 
maps of proximal variables to feed formulas 
implemented in electronic spreadsheets. 

3. The effect of each variable can be calculated 
independently from a joint solution, with the assumption 
that only the input variables are spatially independent.  

The main disadvantage of this method is that it 
assumes that the input maps are conditionally 
independent between them. 

 
Test of conditional independence 

The weights of evidence method require(s) that the 
input maps are spatially independent. For this, is applied 
a group of statistical tests to estimate this assumption, 
like the index of Cramer (V), Joint Information 
Uncertainty (U), entropy measures and the chi-squared 
test. According to Bonham-Carter (1994), values less 
than 0.50 suggest less association than more. In pair 
values of correlated maps that present results of more 
than 0.50, should be chosen a variable and eliminated, 
considering: 

1) The variable to be eliminated must be that which 
presents lower explanatory power for the phenomenon 
of land cover change, i.e.: the one that is less correlated 
with the event. 

2) When both variables are important to model the 
phenomenon, both can be combined in a single layer, 
using a Boolean operation. Thus, there is no loss of 
information. 

In this paper, we used the values of Cramer's test and 
the Joint Information Uncertainty to estimate the 
independence between the variables. These indexes 
have values ranging from zero (0) to one (1), in that the 
closer the values are to zero, the lower the degree of 
dependence between variables.  

The Cramer Index is then defined by Bonham-Carter 
(1994) as: 
 

MT
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where X2 is the chi-squared statistic of the contingency 
table relating two variables; T.. corresponding to the 
sum total of the values from the contingency table, M is 
the minimum of (n-1, m-1), where n is the number of 
lines, and m the number of columns. 

The Joint Information Uncertainty belongs to the 
class of entropy measures, which are also based on the 
matrix of cross-tabulation, but can also be used for the 
measurement of associations. Assuming that the values 
Tij are transformed in area proportions, p, by dividing 
each area element by the sum total T.. .Therefore, pij = 
Tij/T.., and the marginal proportions are defined as pi. = 
Ti./T.. and as p.j = T.j/T.. . Measures of entropy, or 
‘statistical information’, are defined using the 
proportions of area as estimates of probabilities. 
Proportions do not have a dimension, which makes the 
entropy indexes have the advantage over the chi-
squared, for not being affected by units of measure 
(Bonham-Carter, 1994). 

Assuming that a matrix of area proportions for the 
maps A and B have been determined from T, then the 
entropy of A and B are defined as: 
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where ln is the natural logarithm. The joint entropy of 
combination, H (A, B) is: 
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Thus, the Joint Information Uncertainty of A and B, 

U (A, B) can be used as a measure of association and is 
defined by: 
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which varies between 0 (zero) and 1 (one). When both 
maps are completely independent, then H(A,B) = H(A) 
+ H(B) and U(A,B) is 0, and when both maps are 
completely dependent, H(A) = H(B) = H(A,B) = 1, and 
U(A,B) is 1. 

 
The transitional functions of Dinamica EGO 

In models using cellular automata, the influence of 
neighboring cells on the transition probability is a key 
issue. The Dinamica divides the transition function on 
neighboring cells in two processes, denominated 
expander and patcher. 

The expander function is responsible for the 
expansion or contraction of spots previously existing in 
a certain class of land cover, while the patcher function 
is intended exclusively to the formation of new spots via 
a mechanism formation of seeds, i.e.: the expander 
function performs transitions from one state i to one 
state j only in the vicinity adjacent to cells with the state 
j, and the function patcher makes transitions from one 
state i to state j only in adjacent neighborhoods of cells 
in a different state of j (Soares-Filho et al., 2002). 

These processes need to be defined for the 
parameters of the average size of the spot and variance 
of the size (given in hectare), beyond the isometry 
which varies between zero and two and refers to the 
aggregation of the spots. 

 
Validation test 

Validation tests can be understood as procedures to 
verify that models either reflect or don’t reflect the 
reality in the desired degree (Batty, 1976). The method 
employed in this paper is based on the concept of 
fuzziness of location, in which the representation of a 
cell is influenced by itself, and to a lesser extent, by 
neighboring cells (Hagen, 2003). Regardless of the 
uncertainty of the category or cellular state, the 
neighborhood’s vector "fuzzy neighborhood" may 
represent the uncertainty of location. 

This evaluation method is considered a flexible 
concordance as it is not based on pixel by pixel, but the 
adjustment for multiple resolutions, in which values 
tend to be higher when compared to indexes of rigid 
compliance. The larger the sample window, the higher 
the index tends to be. 

Thus, from a certain resolution (typically above 11 
or 13 pixels) it is common that saturation occurs, giving 
the same inefficiency to assess the adjustment between 
the real map and the simulated map (Costanza, 1989). 

In the method of validation by an exponential decay 
a fuzzy vector is associated to each cell on the map. 
This vector has as many elements as categories (classes 
of land cover) of the maps, adopting 1 for the category 
= i, and 2-d / 2 for categories different than i, where (d) is 
the unitary distance between cells. When the class is not 
found in the neighborhood’s window, the value 0 (zero) 
is used. The vector of fuzzy neighborhood (Vnbhood) 
for each cell is given by: 
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(17) 

 
where µ nbhood i represents relevance to the category i 
in a neighborhood of R cells (typically R = n2); µ crisp ij 
is the relevance of the category i to the neighboring cell 
j, assuming the vector crisp 1 for i and 0 for different 
categories of i (i ⊂ C); mj is the relevance based on 
distance of neighboring cell j, where m refers to a decay 
function of distance, for example, an exponential decay 
(m = 2-d/2), where d is the unitary distance between 
cells, measure from centroid to centroid. 

The most appropriate choice in decay function and 
window size of the sampling depends on the uncertainty 
of the data and the tolerance threshold of spatial error. 
Although there is no consensus on which setting defines 
a threshold of acceptance or rejection of the model, it is 
accepted that a model gives good results when its 
setting is higher than obtained from a comparison 
between the initial and final maps (Hagen, 2003). 

 
Input data 

The dynamic modeling for land cover developed in this 
paper, was performed using two land cover maps, 1998 
(initial landscape), and 2010 (final landscape), both 
derived from visual interpretation of Landsat 5 TM 
images. 
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The land cover maps were chosen in the period 
selected because of the great changes that are occurring 
in the study area, such as the construction of the Rio de 
Janeiro Metropolitan Arc (RJMA), Brazilian economic 
growth, and the World Cup 2014, which increased 
investments in Brazil, therefore, this period analyzed 
better characterizes future growth trends. 

The Rio de Janeiro Metropolitan Arc is a great road 
construction project, which connects the Rio de Janeiro 
Petrochemical Complex (COMPERJ) and the Atlantic 
Steel Company (CSA) to the Port of Itaguaí, located in 
Sepetiba Bay, 80 km from the city of Rio de Janeiro, 
and major federal highways in the state to reroute the 
flow of vehicles away from the city of Rio de Janeiro. 

We considered three classes of land cover: (1) 
woody vegetation, (2) constructed areas and (3) others 
(involving the entire non-urbanized area, water bodies, 
exposed soil and other less representative classes). The 
generalization of land cover classes was needed due to 
the resolution of the images used, and the complexity of 
the model tends to increase when greater numbers of 
distinct activity are considered (Batty et al., 1999). 

Eight spatial variables were used to explain the 
changes in land coverage in the analyzed period (1998-
2010): (i) elevation, (ii) slope, (iii) distance to roads, 
(iv) protected areas, (v) distance to rivers, (vi) geology, 
(vii) mining areas, and (viii) distance to RJMA. Table 1 
shows the source of data and the process performed to 
obtain it. 

The variables mined area and distance to RJMA 
began to cause an impact on the area in 2001 and 2009, 
respectively. Therefore, as the input data in the 
simulation should correspond to the initial time that the 
variable starts to influence the area, the Dinamica EGO 
has an operator called ‘select’ for inserting these 
variables in the iteration corresponding to the years they 
began to cause impact, and also adding the weights of 
evidence. 

These variables were chosen according to the 
knowledge of the changes occurring in the area and the 
data availability. 

 
Analysis and results 

Transition rates 

Three transitions occurred in the study period, as shown 
in Table 2. The transition ‘woody vegetation to others’ 
shows that a significant percentage of vegetation 
decreased at a rate of 2.52% per year during the period 
1998-2010. The rate of urban growth is small compared 
with the other changes in the area. 
 
 
 
 

Simulation period 1998-2010 

As discussed in Section 3.3, in this paper Cramer’s 
coefficient and Joint Information Uncertainty were used 
to verify the independence between pairs of variables. 
The results obtained for the statistical tests are shown in 
Tables 35. 
 
Table 1. Source of data used and process performed to obtain it 

Layer Scale Date Source Processing 
Elevation 1:10.000 1975 FUNDREMa DEM 

Slope 1:10.000 1975 FUNDREM DEM 
Distance to 

roads 
1:10.000 1975 FUNDREM Euclidian 

distance 
Distance to 

rivers 
1:10.000 1975 FUNDREM Euclidian 

distance 
Protected areas 1:100.000 2000 EMb - 

Geology 1:500.000 2000 CPRMc - 
Mining areas 1:150.000 2001 TM Landsat 5 Visual 

interpretat
ion 

Distance to 
RJMA 

1:250.000 2007 EISd Euclidian 
distance 

a Foundation for the Development of the Metropolitan Region of Rio de 
Janeiro (FUNDREM); b Environmental Ministry (EM); c Mineral Resources 
Research Company (CPRM); d Environmental Impact Study (EIS). 
 
Table 2. Annual transition of land cover 

Land cover transitions 1998-2010 (%/year) 

Woody vegetation to others 2.52 
Others to woody vegetation 0.43 
Others to constructed areas 0.05 

 
Table 3. Values between pairs of variables for the transition ‘others 
to constructed areas’ 

U/V e DRi DR DM S G 
E - 0,0757 0,0908 0,2028 0,2426 0,3990 
DRi 0,0188 - 0,1236 0,0840 0,1950 0,5662 
DR 0,0256 0,0494 - 0,1573 0,1523 0,4812 
DM 0,1585 0,0215 0,0857 - 0,1029 0,3445 
S 0,1461 0,0955 0,0800 0,0299 - 0,5330 
G 0,2392 0,2170 0,2019 0,1182 0,4272 - 
E = Elevation, G = Geology, DR = Dist. to rivers, Dist. to roads, DM = Dist. 
to RJMA, and S = Slope. 
 

Cramer’s coefficient (V) 
Joint Information Uncertainty (U) 

 
Table 4. Values between pairs of variables for the transition ‘others 
to woody vegetation’ 

U/V E P DRi DR S 
E - 0.2359 0.0904 0.0987 0.2706
P 0.0274 - 0.0239 0.2121 0.0969
DRi 0.0172 0.0008 - 0.0510 0.1110
DR 0.0265 0.0150 0.0025 - 0.0869
S 0.1634 0.0053 0.0170 0.0135 - 
E = Elevation, P = Protected areas, DR = Dist. to rivers, Dist. to roads, and S 
= Slope. 
 

Cramer’s coefficient (V) 
Joint Information Uncertainty (U) 
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Table 5. Values between pairs of variables for the transition ‘woody 
vegetation to others’ 

U/V E M P DRi DR DM S 
E - 0.1671 0.2360 0.0747 0.1039 0.0948 0.2708
M 0.0166 - 0.0208 0.4065 0.6285 0.0834 0.0327
P 0.0212 0.0040 - 0.0454 0.2126 0.0265 0.1032
DRi 0.0194 0.2472 0.0020 - 0.2473 0.0764 0.2252
DR 0.0243 0.1276 0.0140 0.1070 - 0.0955 0.1967
DM 0.0110 0.0136 0.0048 0.0057 0.0176 - 0.0464
S 0.1632 0.2479 0.0042 0.1250 0.0837 0.0043 - 

E = Elevation, M = Mining areas, P = Protected areas, DR = Dist. to rivers, 
Dist. to roads, DM = Dist. to RJMA, and S = Slope. 

Cramer’s coefficient (V) 

Joint Information Uncertainty (U) 

 
The results obtained in tests of conditional 

independence shows that three pairs of variables had 
values above 0.50 for V. However, as the test U have the 
advantage of not being affected by the area, as happens 
with V and presented values below the accepted rate, all 
variables were retained. The values obtained for the 
weights of evidence for the variable slope for the 
transition 'others to woody vegetation' are in Fig. 2. 

The graph in Fig. 2 shows that the last ranges of the 
variable slope are of steeper area and thus costlier for 
human occupation, and therefore more prone to the 
regeneration of trees. The simulation tests were 
conducted with the land cover map of the initial land 
cover (1998), the set of spatial variables, the weights of 
evidence and the transition matrix. Also in this step, the 
parameters of the patcher and expander functions should 
be defined for the medium size, variance and isometry 
of the spots to be formed or expanded/contracted. In this 
paper, only the expander function was used due to the 
changes in landscape which occur exclusively through 
the expansion of previously existing spots. The 
parameters used to generate simulated landscape are 
inserted into Dinamica EGO in hectare (ha), the values 
used are shown in Table 6. 

The relative values for average size and variance of 
the spots were obtained through the model 
Calc_Mean_Patch_Sizes_And_Standard_Deviations.Ego 
available from version 1.7.8 software, and adjustments 
were made to these parameters through visual analysis 
so the simulated map was as close to the actual final 
map as much as possible. The simulation test is shown 
in Fig. 3. 

 

 
Fig. 2 Weights of evidence (W+) values obtained in the simulation 
considering the variable slope in relation to the transition ‘others to 
woody vegetation’. 
 
Table 6. Parameters used in expander to generate landscape 
simulated during the period of 1998-2010 

 

Mean 
Patch 
Size 
(ha) 

Patch Size 
Variance 

(ha) 

Patch 
Isometry 

Woody vegetation to 
others 

0.8 0.5 1.0 

Others to woody 
vegetation 

0.7 0.5 1.0 

Others to constructed 
areas 

0.2 2.0 1.0 

 

 

Fig. 3 Real and simulated landscape for the year of 
2010.
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The fragmentation of the woody vegetation class 
prevented better results for the simulation. The model 
validation in the second period of analysis was 
performed by the method of fuzzy similarity by 
exponential decay. The values are shown in Fig. 4. 

 
 

Generation of scenarios 

The construction of scenarios is a tool that can be used 
to understand and anticipate changes and thus improve 
decision-making. The scenarios are not predictions in 
the strict sense, but offer a different vision of different 
future alternatives, possible and imagined, in which 
decisions will be made (Chermack, 2007). 

With the validated model, an annual land cover 
scenario was generated for the year 2020 called 
‘projective’, which is based on the continuation of 
current trends into the future and, therefore, based on 
the same reference parameters for the expander and the 
same transition matrix for the period 1998-2010. Based 
on the outcome generated, changes were calculated for 
each class of land cover, according to Table 7. 
 

 
Fig. 4 Fuzzy similarity index based on multiple window sizes for the 
simulation of the landscape in 2010. 
 
Table 7. Total annual area for the class of land cover for the scenario 
projective 

Simulated maps 
“projective 
scenario” 

Woody 
vegetatio
n (km²) 

Constructed 
area (km²) 

Others (km²) 

2010 16.67 6.17 74.28 
2011 16.54 6.17 74.40 
2012 16.44 6.20 74.46 
2013 16.35 6.25 74.52 
2014 16.26 6.29 74.56 
2015 16.18 6.33 74.60 
2016 16.10 6.37 74.64 
2017 16.01 6.42 74.68 
2018 15.94 6.46 74.72 
2019 15.86 6.50 74.75 
2020 15.78 6.55 74.78 

The Table 7 was calculated using a map of the actual 
coverage of the year 2010, obtained through 
classification of Landsat imagery, and annual maps of 
the generated prognosis. 

The analysis of the table permits evaluating the 
source and destination of land cover classes. There was 
an increase of 0.38 km2 in constructed area in 10 years, 
corresponding to a total increase of 6.0%, while the 
woody vegetation decreased, 0.89 km2 totaling a loss of 
5.47% over the same period. 

It is also possible to evaluate that in the first two 
years that RJMA (2012/2013) will be in operation, there 
will be the highest rate of growth in the constructed area 
class, showing an increase of 0.81% during that period. 
This major growth in the early period of RJMA 
operation can be explained by the increase of road 
connections and regular transport lines, which are 
currently lacking in the area.  

The modeling results indicate the growth of suburbs 
close to AMRJ. The neighborhoods located south of the 
study area, belonging to the municipalities of Belford 
Roxo and Duque de Caxias, which already suffer from a 
lack of infrastructure relative to the lack of paved 
streets, unregulated land occupation, and flooding 
during the rainy season. 

The planning of the pipelines is done taking into 
consideration the crossing, at its greatest extent, in rural 
areas. However, population growth and economic 
causes make these areas previously unoccupied come to 
be used for urban use. This population growth near the 
range of pipes increases the risk of damage to the 
pipeline and the population living or working near these 
areas. 

Considering the direct area of influence of 400 m on 
each side of the duct, special attention should be given 
to districts within the municipality of Duque de Caxias 
that are crossed by the pipeline. The expansion of these 
areas must be accompanied by the public power who 
should also consider the possibility of expropriation of 
property and relocation of these people due to the 
proximity of the pipeline. 

 
 

CONCLUSIONS 

The reduced size of the study area and the resolution of 
images used to obtain the maps of land cover is a factor 
that should be taken into account in modeling, since 
more accurate results could be obtained if satellite 
images or aerial photographs with a higher resolution 
were available, and also if the model was extrapolated 
for the total municipality area, and thus make it possible 
to consider a greater number of variables. 

The model developed in this article helped to 
understand the phenomena involved in the changes of 
land cover through the results obtained using statistical 
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methods. The Dinamica EGO proved to be a useful and 
flexible tool, capable of creating different models to 
represent reality. 

The safety of the pipeline and the population living 
near it, can present the following considerations: 

 The establishment of standards for the use and 
land cover in areas close to the range of pipelines by the 
public in conjunction with the company responsible for 
operating the pipeline, through management plans, can 
guide urban development near these areas. In this sense, 
the dynamic modeling contributes to the planning of the 
areas near the pipelines, providing the main trends of 
occupation. 

 The creation, maintenance and availability of a 
database through the internet, with information relating 
to pipelines in operation, transported products, and the 
types of land use and land cover near the pipeline would 
also be an important tool for risk management and 
decision making in case of accidents. 
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