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Abstract: The search for an accurate evapotranspiration (ET) continues when the world has 

responsibility to cope with the water scarcity issue, population outgrown and uncertain 
change of weather. Measuring actual evapotranspiration (ETa) can be tedious and 
requires a lot of time and cost. Therefore, numbersof empirical ETmodels have been 
developed to overcome this problem. The Valiantzas’ modelsare quite familiar to the 
hydrologist community as it has been developed based on Penman evaporation 
equation. This paper presents the evaluation on the selected six Valiantzas’ models by 
comparing to Food and Agricultural Organization Penman-Montieth (FAO-PM) 
empirical model in estimating ET in the Peninsular Malaysia. Seventeen meteorological 
stations around Peninsular Malaysia with data gathered from 1987 till 2003 were tested. 
The performance for each model was evaluated by root mean square error (RMSE), 
coefficient of determination (R2), percentage error (PE) and mean bias error (MBE). All 
the six models showed good agreement to FAO-PM with R2> 0.90. The PETval2 model 
which gave R2 of 0.97 was the best performer with the lowest RMSE, PE and MBE of 
0.26, 5.5% and 0.14,respectively. The good and sensible performance on the ET 
estimation displayed by Valiantzas’ model may promise an accurate method for 
calculation on the water management for irrigation and catchment studies. 
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INTRODUCTION 

The importance of evapotranspiration (ET) in 
hydrological cycle is undeniable. With an accurate 
estimation of ET a well balance water resources system 
can be obtained. The increasing trend on the hydrological 
and climatology research studies indicate that the world 
is striving in coping with global warming and climate 
change issues. Climate change is expected to alter ET in 
complex ways, notably by increasing the evaporation 
demand of the atmosphere, influencing the 
characteristics of the precipitation and changing the 
vegetation (Turner et al., 2017). The understanding on 
how the of potential evapotranspiration (ETp) in 
managing water resources for domestic, agricultural and 
industrial uses while adapting to the climate change 
alteration is really important. The effect of climate 
change may vary which depending on the climate region. 
An increasing of temperature does not always cause ET 
to increase. Moonen et al. (2002) showed parallel trend 
of maximum temperature and ET. On the other hand, 
(Chattopadhyay & Hulme, 1997; Lofgren, Hunter, & 
Wilbarger, 2011) revealed that with the increasing of 
temperature, ET trends tend to decrease. 

Although actual evapotranspiration (ETa)gives 
maximum precision of ET(Abdullah & Malek, 2016; 
Benli et al., 2006; Cruz-Blanco et al., 2014; Djaman et 
al., 2016; Shiri et al., 2013), this method is known for its 
complexity. Number of methods have been developed for 
estimating ET such as bowen ratio energy balance system 
(Malek & Bingham, 1993; Spittlehouse & Black, 1980; 
Todd et al., 2000), eddy covariance flux partitioning 
(Amazirh et al., 2017; Anderson et al., 2017; Wang & 
Wang, 2017), empirical models (Allen et al., 1998; Irmak 
et al., 2003; Makkink, 1957; Penman, 1948; 
Thornthwaite, 1948; Valiantzas, 2013a; Xu & Singh, 
2000), Extreme Learning Machines (Abdullah et al., 
2015; Feng et al., 2016; Feng et al., 2017; Gocic et al., 
2016; Taormina & Chau, 2015; Torres et al., 2011) and 
artificial neural network (Adamala et al., 2014; 
Antonopoulos & Antonopoulos, 2017; Falamarzi et al., 
2014; Kumar et al, 2002; Wandera et al., 2017; Yassin et 
al., 2016). Every method has its own pros and cons and 
yet empirical model method seems to be the easiest way 
in computing ETp since it only requires meteorological 
data. Researchers have agreed that FAO-PM is the best 
empirical model to compute ET but it is also agreeable 
that this model is data demanding and not applicable at 
certain región (Ahooghalandari et al., 2016; Almorox et 
al., 2015; Tabari et al., 2013; Tomas-Burguera et al., 
2017; Yeh, 2017). With that many empirical models been 
developed that are more site specific and their data inputs 
are based on the available data of that region. The 
outcome of these models may differ which depends on 
the climate regions that it needs rigorous local calibration 
in order to use it (Paparrizos et al., 2016). Foroud et al. 
(1989) found that wind speed plays the  most  important

factor in estimating ET in the southern Alberta while 
Vicente‐Serrano et al. (2014) claimed that ET has strong 
sensitivity to relative humidity along the whole year. A 
study by Gong et al. (2006) in Changjiang (Yangtze 
River) basin and Zuo et al. (2012) in Wei River basin 
found that shortwave radiation and relative humidity 
showed a significant effect on ET. These two studies 
proved that even for the same state, the influential 
variable on ET can be different. A sensitivity analysis by 
Ahmad et al. (2017) on meteorological data from 17 
stations around Peninsular Malaysia revealed that 
radiation and temperature have significant effect on ET 
whereas relative humidity is the least influential variable. 
In fact according to Samani (2000), temperature and solar 
radiation are the most important parameter in estimating 
ET. 

The most popular empirical model is FAO-PM where 
it gives prediction close to ETa and yet the model is data-
driven which is not applicable in most of the region. One 
of the well-known model after FAO-PM model is 
Valiantzas’ model. It has modified the Penman’s 
radiation-aerodynamic combination equation by 
eliminating the wind speed data which is rarely available 
and out of question on its precision (Valiantzas, 2013b). 
The improved Penman’s equation was then derived to 
estimate reference evapotranspiration that are made to 
account for the impact of humidity on the aerodynamics 
as shown in Eqs (1) and (2). It has been recognized as the 
accessible model for calibration purposes over FAO-PM 
(Valipour, 2015). 
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where T is mean temperature (°C), α is reflection 
coefficient or albedo with typical value for a grass cover 
is 0.23, Ra is extra-terrestrial radiation (MJ m-2 d-1), RH 
is relative humidity (%) and (fu = 1+0.54u) as the original 
Penman’s formula includes wind speed. To make sure 
that this model can be used at both low and high relative 
humidity regions, Waero has been introduced as calibrated 
coefficient for RH higher than 65% and lower or equal to 
65%.  

This paper presents the investigation on the selected 
six Valiantzas’ empirical models performance in 
estimating ET in Peninsular Malaysia and identifying the 
best performing estimation model. 
 
MATERIALS AND METHODS 
 

The investigation was carried out on the selected six 
Valiantzas’ empirical models to assess the performance 
on the ET estimation. Then the best model would be
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Table 1. Information on the meteorological stations 

No. ID Station 
Latitude Longitude Mean Sea Level (MSL) 

(N) (E) (m) 
   6° 12' 100° 44' 4.0 
   3° 58' 102° 21' 59.5 

3 48601 Bayan Lepas (BL) 5° 18' 100° 16' 2.8 
4 48632 Cameron Highlands (CH) 4° 28' 101° 22' 1545.0 
5 48604 Chuping (Chu) 6° 29' 100° 16' 21.7 
6 48672 Kluang (Klu) 2° 01' 103° 19' 88.1 
7 48615 Kota Bharu (KB) 6° 10' 102° 17' 4.6 
8 47616 Kuala Krai (KKrai) 5° 32' 102° 12' 68.3 
9 48618 Kuala Terengganu Airport (KT) 5° 23' 103° 06' 5.2 
10 48657 Kuantan (Ktn) 3° 47' 103° 13' 15.3 
11 48665 Melaka (Mlk) 2° 16' 102° 15' 8.5 
12 48674 Mersing (Ms) 2° 27' 103° 50' 43.6 
13 48649 MuadzamSyah (Mdz) 3° 03' 103° 05' 33.3 
14 48679 Senai (Sn) 1° 38' 103° 40' 37.8 
15 48620 Sitiawan (Stwn) 4° 13' 100° 42' 7.0 
16 48647 Subang (Sbg) 3° 07' 101° 33' 16.5 
17 48653 Temerloh (TM) 3° 28' 102° 23' 39.1 

 
 
identified based on the statistical characteristics. The 
FAO-PM model was chosen as the benchmark model 
for the performance assessment. The models were tested 
using the recorded meteorological data for 17 stations 
in Peninsular Malaysia which were obtained from 
Malaysia Meteorological Department (MMD) from 
year 1987 to 2003.The details of the stations are 
presented in Table 1. 

The available meteorological data from all stations 
comprised of the maximum (Tmax), mínimum (Tmin) and 
average (Tavg) temperature, solar radiation (Rs), wind 
speed (u) and relative humidity (RH). These data were 
the input parameters for the ET models. The range of 
value for parameters of solar radiation, maximum 
temperature, minimum temperature, average 
temperature, relative humidity and wind speed used in 
this study were 1.49to30.46MJ m-2 day-1, 18.1°to38.4°C, 
12.7° to 27.7°C, 16.1° to 31.6°C, 61.8% to 99.9% and 
0.07 to 1.65 ms-1, respectively. The meteorological data 
for the studied stations are as shown in Table 2. 

Although there were more than 50 empirical models 
available in estimating ETp, only 6 prominent 
Valiantzas’ models were selected based on its input 
variables can easily obtained from MMD. The equations 
of the 6 Valiantzas’ models and FAO-PM model are as 
described in Table 3. The models’ input parameters are 
also shown on the right column of the table. It was 
assumed that the most ideal model was expected from 
the model that required fewer parameters and capable to 
yield closest agreement to FAO-PM model result.  

In which Tmax is maximum temperature (°C), Tmin is 
minimum temperature (°C), Tavg is average temperature 
(°C), RH is relative humidity (%), u is wind speed (ms-1), 
Rs is solar radiation (MJ m-2 day-1), Ra is extraterrestrial 

radiation (MJ m-2 day-1), ϕ is the latitude (rad) and z is 
elevation of the site (m). 

The performance of each Valiantzas’ model against 
the FAO-PM model (as a benchmark model) is 
evaluated based on root mean square (RMSE), 
coefficient of determination (R2), percentage error (PE) 
and mean bias error (MBE) which are defined as 
follows: 
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where Pi and Oi are predicted and observed values 
respectively, 𝑃ത and 𝑂ത are the mean value of Pi and Oi, 
and n is the total number of data. The result of 
Valiantzas’ models was assumed as predicted value and 
the result of FAO-PM method was assumed as the 
observed value.
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Table 2. Statistical characteristics of meteorological data 
 

  
Tmax 
(°C) 

Tmin 

(°C) 
Tavg 

(°C) 
RH 
(%) 

u 
(ms-1) 

Rs 

(MJ m-2 day-1) 
AS 

Min 28.2 19.6 25.2 63.4 1.65 6.10 
Max 36.7 26.4 31.5 98.9 11.59 30.46 
Mean 32.6 23.7 28.1 82.2 6.51 18.32 

Std. Dev 1.70 1.00 0.98 6.41 1.79 4.33 
BE 

Min 27.4 18.9 24.5 75.4 0.22 6.21 
Max 36.8 25.2 31.0 99.4 9.65 27.03 
Mean 32.6 22.8 27.7 86.5 4.97 17.48 

Std. Dev 1.71 0.92 1.04 4.03 1.69 4.07 
BL 

Min 28.4 21.8 25.4 61.8 0.15 5.29 
Max 34.5 27.7 30.5 95.2 2.47 28.58 
Mean 31.5 24.4 28.0 80.8 1.26 17.82 

Std. Dev 1.16 0.96 0.89 5.96 0.42 4.48 
CH 

Min 18.1 12.7 16.1 78.9 0.07 1.49 
Max 27.0 17.4 21.9 99.9 3.44 27.96 
Mean 22.5 15.4 19.0 91.1 1.40 14.14 

Std. Dev 1.59 0.78 0.93 4.33 0.74 4.56 
CHU 

Min 28.4 21.6 25.4 65.1 0.07 6.36 
Max 37.1 25.9 31.4 98.0 2.69 27.65 
Mean 32.8 23.7 28.3 82.6 1.09 18.37 

Std. Dev 1.66 0.80 0.99 6.45 0.60 3.74 
KB 

Min 26.5 21.1 23.9 70.4 0.15 4.43 
Max 36.4 26.7 30.9 92.8 3.14 28.04 
Mean 31.5 23.9 27.7 81.5 1.59 18.43 

Std. Dev 1.66 0.97 1.08 3.98 0.51 4.62 
KKRAI 

Min 27.2 20.3 23.9 73.7 0.07 5.26 
Max 38.4 25.0 31.6 99.1 1.05 29.63 
Mean 32.8 22.6 27.7 86.4 0.46 17.38 

Std. Dev 1.99 0.86 1.15 4.62 0.22 4.13 
KLU 

Min 27.5 21.0 24.7 72.9 0.07 4.25 
Max 36.0 25.3 30.6 100.0 2.09 25.90 
Mean 31.9 23.1 27.5 86.5 0.79 15.97 

Std. Dev 1.55 0.76 0.95 4.90 0.44 4.11 
KT 

Min 27.2 20.7 24.6 72.3 0.07 3.35 
Max 35.8 26.4 31.0 93.9 2.99 30.28 
Mean 31.6 23.8 27.7 83.0 1.49 17.79 

Std. Dev 1.61 0.96 1.02 3.94 0.53 5.31 
KTN 

Min 26.1 19.5 23.7 72.7 0.07 2.63 
Max 36.7 26.6 31.0 98.2 3.07 27.19 
Mean 32.0 23.3 27.6 84.4 1.49 16.39 

Std. Dev 1.85 0.98 1.17 4.41 0.58 4.49 
MDZ 

Min 27.3 19.7 24.4 74.0 1.42 3.27 
Max 37.3 25.0 31.0 98.3 10.92 26.11 
Mean 32.4 22.8 27.6 85.7 6.15 16.36 

Std. Dev 1.87 0.82 1.03 4.22 1.70 4.25 
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Table 3. Statistical characteristics of meteorological data (to be continue) 
 

MLK 
Min 28.9 21.2 25.2 70.2 0.07 5.35 
Max 35.6 26.1 30.8 95.2 2.77 28.62 
Mean 32.2 23.6 27.9 82.7 1.15 17.22 

Std. Dev 1.30 0.85 0.87 4.80 0.52 4.20 
MS 

Min 26.4 20.9 23.9 75.3 0.60 2.20 
Max 35.0 25.6 30.0 98.4 3.66 29.91 
Mean 30.9 23.3 27.1 86.7 2.05 17.02 

Std. Dev 1.67 0.91 0.92 4.39 0.58 5.10 
SBG 

Min 29.1 21.2 25.8 65.1 0.07 4.89 
Max 36.2 26.7 31.2 94.7 2.09 26.45 
Mean 32.8 23.9 28.3 80.1 1.11 15.80 

Std. Dev 1.33 0.93 0.89 5.20 0.38 3.88 
SN 

Min 27.7 20.2 24.6 72.6 0.07 2.47 
Max 35.9 24.8 30.3 99.6 2.17 28.44 
Mean 32.1 22.8 27.5 86.1 0.98 15.30 

Std. Dev 1.48 0.75 0.85 4.67 0.43 4.55 
STWN 

Min 29.3 20.1 25.4 74.8 0.07 6.16 
Max 35.2 25.6 30.3 95.5 1.80 27.81 
Mean 32.3 23.3 27.8 84.6 0.89 17.40 

Std. Dev 1.15 0.84 0.77 3.63 0.32 3.89 
TM 

Min 27.1 19.7 24.8 71.8 0.97 4.13 
Max 37.5 25.3 31.4 98.4 11.14 27.86 
Mean 33.0 23.0 28.0 84.3 5.70 17.00 

Std. Dev 1.75 0.86 1.07 4.60 1.92 4.04 

 
 

RESULTS AND DISCUSSION 
 
Results of the ET estimation based on the Valiantzas’ 
were assessed based on minimum errors and the FAO-
PM was decided as the benchmark. The model ranking 
was identified and Fig. 1 plots the ranking of six 
Valiantzas’models based on their performance in ET 
estimation. Summary of model performance is tabulated 
in Table 4. It is obvious that PETval2 consistently gives 
a sensible performance when tested at 12 out of 17 
stations followed by PETval4, PETval6, PETval3, and 
PETval5. The error values indicated in Table 4 confirm 
that the difference in performance among these five 
models is not large. The PETval1 clearly displays a poor 
performance amongst Valianstzas’ models. 

It appeared that all the Valiantzas’ models 
overestimate ETp. The PETval1 has overestimated by 
0.58 while others by in the range of 0.14 to 0.2.The 
PETval1 model took Tmin into consideration and this was 
possibly the cause of over estimation of ETp as Malaysia 
mínimum temperature is not the prominent paremeter 
affecting ET. On the other hand the other five Valiantzas’

models disregarded the Tmin variable in the ETp 
estimation. The PETval2 shared the similar values of 
MBE and R2 as PETval4. Since the PE and RMSE for 
PETval2 was much lower than PETval4, then PETval2 
was chosen as the best model. The PETval1 yielded a 
poor performance when compared to the other models 
where the RMSE was 0.68, PE was 16.4 and MBE was 
0.58. The other models are scattered between rank 1 to 
rank 6. It is not unusual as the performance of each model 
varies depending on the area topography. Though it is 
under the same region. 

Fig. 2(a) to 2(d) illustrate the comparison of mean 
daily ETp for group of stations based on their range of 
elevations. Fig. 2(a) represents stations that are within 
the range 4 MSL to 10 MSL, Fig. 2(b) varies between 15 
MSL to 22 MSL, Fig. 2(c) from 39 MSL to 44 MSL and 
Fig. 2(d) between 59 MSL to 1545 MSL. Mostly the ETp 
values of all methods were above 4 mm day-1 for 
elevation of4 MSL to 10 MSL. The results of mean daily 
PET were in the range of 3 mm day-1to 5 mm day-1 for 
Fig. 2(a) to Fig. 2(c) for all estimation methods that 
indicated the elevation between 4 MSL to 60 MSL gave 
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Table 4. Description on the ET models used in the study 

Model Equation Parameter 
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(PETval5) 
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Table 5. Evaluation on the statistical performance for each 
Valianstzas’ model 
  PETval1 PETval2 PETval3 PETval4 PETval5 PETval6 
RMSE 0.68 0.26 0.46 0.29 0.44 0.37 
R2 0.98 0.97 0.96 0.97 0.97 0.95 
PE 16.4 5.5 9.8 7.0 9.8 7.6 
MBE 0.58 0.14 0.21 0.14 0.19 0.26 
 
 
 

 
Fig. 1 Performance ranking of ET models  

almost similar pattern of ETp. The highest elevation 
station CH with 1545 MSL yielded the lowest ETp 
estimation followed by second highest elevation station 
KLU with 88.1 MSL, where both stations consistently 
yielded similar results for all methods of estimation. The 
elevation higher than 1000 MSL tends to lower the 
estimation but the results of all methods are still similar. 

Erro! Fonte de referência não encontrada. illustrates 
the mean daily ETp for all stations according to 
corresponding month that predicted by the six ET 
estimation models. In average, it can be seen that all the 
Valiantzas’ models have overestimated ETp. PETval1 
model gave the highest error in overestimation of the ETp 
while PETval4 was the lowest error in overestimation 
and followed by PETval2 and others. Results in Fig. 3 
suggest that the models PET2val2, PETval3, PETval4, 
PETval5 and PETval6 are reliable to be adopted as the 
models for ETp estimation in Peninsular Malaysia. The 
overestimation or underestimation value is simply 
illustrated the diversion of results from the observed 
values. In agreement to previous study by Sentelhas et al. 
(2010) the results obtained have overestimated when the 
Rswas lower than 20 MJ m-2 day-1. 

PETval1

PETval2

PETval3

PETval4

PETval5

PETval6
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(a) (b) 

 
(c) (d) 

Fig. 2 Comparison of mean daily ETp based on different groups of station 

 

 
Fig. 3 Mean Daily ETp for the Valiantzas’ models 

 
 
CONCLUSION 
 
In this study, six Valiantzas’ models were applied to 
estimate the ETpwith 14-year dataset (1987 to 2003) for 
selected 17 meteorological stations in Peninsular 
Malaysia by deduced their results with FAO-PM ETp 

estimation. The most reliable Valiantzas’ models after 
FAO-PM was discussed in this paper. All Valiantzas’ 
methods have core input variables of Tmean, Rs and RH. In 
general the Valiantzas’ models performed well under 
tropical climate wherePETval2model with Tmean, Rs, u 
and RH is the best candidate followed by PETval4 (Tmean, 
Rs, Ra, RH). The accuracy of the results was influenced 
by the variables in the model. Although PETval3 (Tmean, 
Rs, u, RH, ϕ) has similar input variables as PETval2, the 
coefficient for relative humidity in PETval2 may have 
induced the discrepancy in the results. Since Peninsular 
Malaysia does not has distinct topographical variation, 
the altitude becomes less influential variable and can be 
neglected in analysis. Hence, the finding suggests 
theValiantzas’ model can be calibrated by using only the 
radiation and temperature variables to produce a better 
ETp estimation. The results show that it is possible to use 
any Valiantzas’ model for ETp estimation under humid 
tropic climate as the difference in performance is not so 
significant. However in the authors’ point of view, it is 

m
m
/d
ay

PETval1

PETval2

PETval3

PETval4

PETval5

PETval6

FPM



Ahmad, Harun, Abdull Hamed, Askari, Ibrahim, Hanapi and Ali 
 

Journal of Urban and Environmental Engineering (JUEE), v.13, n.1, p.174-182, 2019 

181

better to use an authentic model for a region with 
uncritical elevation and topography factors. 
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