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Abstract: Wind energy is a very popular renewable energy resource. In order to increase the use 

of wind energy, it is important to develop wind turbine rotor with high rotations rates 
and power coefficient. In this paper, a method for the determination of the aerodynamic 
performance characteristics using NACA airfoils is given for three bladed horizontal 
axis wind turbine. Blade geometry is obtained from the best approximation of the 
calculated theoretical optimum chord and twist distribution of the rotating blade. 
Optimal rotor theory is used, which is simple enough and accurate enough for rotor 
design. In this work, eight different airfoils are used to investigate the changes in 
performance of the blade. Rotor diameter taken is 82 m which is the diameter of 
VESTAS V82-1.65MW. The airfoils taken are same from root to tip in every blade. 
The design lift coefficient taken is 1.1. A computer program is generated to automate 
the complete procedure.  
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INTRODUCTION  

The power efficiency of wind energy systems has a high 
impact in the economic analysis of this kind of 
renewable energies. The efficiency in these systems 
depends on many subsystems: blades, gearbox, electric 
generator and control. Some factors involved in blade 
efficiency are the wind features, like its probabilistic 
distribution, the mechanical interaction of blade with the 
electric generator, and the strategies dealing with pitch 
and rotational speed control. It is a complex problem 
involving many factors, relations and constraints. The 
increasing awareness of the general public to climate 
change and global warming has provided opportunities 
for wind turbine applications in the UK. The UK claims 
40% of the wind energy resources of Europe. Europe 
leads the world with 70.3% (23GW peak) of the total 
operational wind power capacity worldwide 
(Ackermann & Soder, 2002). As well as large wind 
turbines operating in open areas on- and off-shore, more 
small-scale wind turbines are being installed and 
operated by homeowners and small enterprises.  

One of the differences between large- and small-
scale wind turbines is that small-scale wind turbines are 
generally located where the power is required, often 
within a built environment, rather than where the wind 
is most favorable. In such location, the wind is normally 
weak, turbulent and unstable in terms of direction and 
speed, because of the presence of buildings and other 
adjacent obstructions. To yield a reasonable power 
output from a small-scale wind turbine located in this 
turbulent environment, and to justify such an installation 
economically, the turbines have to improve their energy 
capture, particularly at low wind speeds and be 
responsive to changes in wind direction. This means 
that small-scale turbines need to be specifically 
designed to work effectively in low and turbulent wind 
resource areas. Currently, manufacturers of small wind 
turbines in the UK are not seen to make an attempt to 
accelerate low-speed airflow prior to reaching the 
turbines rotating blades. 

The aerodynamic and structural design of rotors for 
horizontal axis wind turbines (HAWTs) is a multi-
disciplinary task, involving conflicting requirements on, 
for example, maximum performance, minimum loads 
and minimum noise. The wind turbine operates in very 
different conditions from normal variation in wind 
speed to extreme wind occurrences. Optimum efficiency 
is not obtainable in the entire wind speed range, since 
power regulation is needed to prevent generator burnout 
at high wind speeds. Optimum efficiency is limited to a 
single-design wind speed for stall regulated HAWTs 
with fixed speed of rotation. The development of 
suitable optimization methods for geometric shape 
design of HAWT rotors is therefore a complex task that 
involves off-design performance and multiple 

considerations on concept, generator size, regulation 
and loads. In Maalawi & Badawy (2001) based on 
Glauert (1958) solution of an ideal wind mill along with 
an exact trigonometric function method, analytical 
closed form equations are derived and given for 
preliminary determination of the chord and twist 
distribution and variation of angle of attack of the wind 
along the blade is then obtained directly from a unique 
equation for a known rotor size and refined blade 
geometry. 

Glauert (1958; 1959) originated the basic 
aerodynamic analysis concept of airscrew propellers and 
windmills. He applied first the momentum and energy 
relationships for simple axial flow and then considered 
the effects of flow rotation after passing through the 
rotor as well as the secondary flows near the tip and hub 
regions. Wilson & Lissaman (1974) and Wilson et al. 
(1976) extended the Glauert’s work and presented a step 
by step procedure for calculating performance 
characteristics of wind turbines. Analysis was based on 
a two-dimensional blade element strip theory and 
iterative solutions were obtained for the axial and 
rotational induction factors. Later on, Wilson (1980) 
outlined a brief review of the aerodynamics of 
horizontal axis wind turbines. The performance limits 
were presented, and short note was given on the 
applicability of using the vortex-flow model.  

In Kishinami et al. (2002), aerodynamic performance 
characteristics of the HAWT were studied theoretically 
by combination analysis involving momentum, energy 
and blade element theory by means of the strip element 
method, and experimentally by the use of a subscale 
model. Three types of blade were examined under 
conditions in which the free stream velocity is varied 
from 0.8 to 4.5 m/s for the open type wind tunnel with 
an outlet duct diameter of 0.88m. The blade consists of 
a combination of tapered rectangular NACA44 series. 
The aeronautical characteristics of the HAWT 
employing the three different types of blades are 
discussed by reference of power and torque coefficients, 
Cp and Cq and to the tip speed ratio, derived from the 
experimental and analytical results. The output 
regulation by variable pitch control/fixed pitch stall 
control method is also discussed in this context. 

This paper focuses on the method for performance 
analysis. The suggested approaches can be divided into 
two stages, namely; (a) Calculation of the blade 
geometry, i.e. the chord and twist distributions, and (b) 
Calculation of elemental power coefficient on the basis 
of optimal rotor theory. In the first stage, the equations 
given in Martin & Hansen (2008) are used for getting 
the chord distribution and, in the second stage, computer 
programme is developed for getting the other parameter 
of blade based on Egglestone & Stoddard (1987). This 
work is completely based on computer program. For 
validation, the results are compared with power 
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coefficient of VESTAS V82-1.65MW (VESTAS, 2011) 
which is experimental. 
 
Optimal Rotors  
 
The Glauert annulus momentum equation provides the 
essential relationships for analyzing each blade segment 
using two dimensional airfoil data. What is needed in 
design however is guidance in this infinite parameter 
space toward that rotor aerodynamics that will be best 
for one particular purpose. Thus, optimal rotor theory. 
Glauert presented a blade element analysis to find the 
“ideal windmill” based on neglecting the airfoil drag but 
including wake rotation or swirl (Glauert, 1935). This 
approach was extended by Stewart (1976) to include the 
effect of drag so that the Glauert analysis becomes a sub 
case of the Stewart analysis for the case of infinite 
lift/drag ratio. The Glauert analysis is simple enough 
and yet accurate enough to be very useful in preliminary 
rotor design. It can be used directly as a synthesis 
procedure, whereas almost all other approaches are 
really analysis procedures.  

The results of the Glauert or Stewart ideal wind mill 
theory is a preferred value of the product, ccl at each 
blade segment as a function of local speed ratio x. This 
yet leaves the choice of c or of cl, the remaining 
parameter then fallowing the ideal value of the product 
ccl. Although this single-point optimal is extremely 
useful for first-cut design, it provides no information as 
to the sensitivity of the performance to off-design 
operation. That is, it is quite possible to come up with a 
design that has a very high Cp at one design tip speed 
ratio X but falls off quite rapidly to either side and so 
fails to garner the most power over a whole wind 
spectrum of velocities. 

In addition to modifying the Glauert optimal blade 
element theory to account for drag, Stewart (1976) 
pointed out that the design freedom in satisfying the 
optimal product ccl can be used to find a chord c that 
will be optimal at two different speed ratios. This 
approach yields a design that is insensitive to 
performance degradation for off design conditions. The 
equations used in Glauert ideal wind mill theory are 
same as the two dimensional airfoil theory except that 
the drag coefficient cd is assumed zero. The effect of 
wake rotation is included. In a well designed rotor with 
a carefully shaped airfoil, the lift/drag ratio is very high, 
on the order of 100 or so, so that the neglect of drag 
during first cut optimization is justified. Subsequent use 
of Stewart theory usually results in small corrections to 
these results. 

From Glauert momentum vortex theory 
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If cd is assumed to be zero, dividing Eq. (3) by Eq. 

(2) gives: 
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Combining this with Eq. (4) gives: 
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At each radius right side of Eq. (7) is constant, 

and therefore the left side must remain constant 
also, while the power is maximized if the quantity 
a’(1 – a) from Eq. (5) is maximized. Performing 
these operations using Lagrange multipliers yields: 
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In the windmill state, a’ must be positive for positive 

output torque. Thus for small x, a approaches 1/4 and a’ 
becomes large, whereas for large x, a approaches 1/3 
and a’ approaches zero. 

Substituting a’ from Eq. (8) into Eq. (7) yields the 
required relationship between a and the local speed ratio 
x as follows: 
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Miller et al. (1978) give a power series in 1/x2 as an 

approximation for the inverse relationship: 
 

2 4 6

1 2 10 418 ........
3 81 729 59049

a
x x x

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞≅ − + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

    (10)     
 

 



Tenguria, Mittal and Ahmed 

Journal of Urban and Environmental Engineering (JUEE), v.5, n.1, p.15-23, 2011 

18

The corresponding relative wind angle φ can be 
found from Eq. (6) as given by 

 
1tan (1 )(1 3 )a a
a
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The optimum blade layout in terms of the product of 

chord c and lift coefficient cl can be found from Eq. (1) 
with cd  = 0. 
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As mentioned previously, there is still some design 

freedom in that both c and cl may be varied while their 
product satisfies Eq. (12). Thus, if chord c is held 
constant, cl (and hence α and θ) will follow Eq. (12). 
Likewise, if cl (and hence α) is held constant, chord c 
must vary according to Eq. (12), and the twist angle θ 
has been specified as a function of r. Alternatively, 
Stewart (1976) has shown that the freedom in satisfying 
the product relation, ccl, can be used to define a blade 
that is optimal over a wider range, i.e., that is insensitive 
to off-design conditions. Miller et al. (1978) also 
integrate the Cp relation along the blade to give closed 
form and series solutions for Cp. Thus, from Eqs (5), (8) 
and (9): 
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which must be integrated from a = 1/4 at r = 0 to the 
value of a at the tip, aT, given by: 
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The integration can be done in closed form, resulting in: 
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where z = 1 – 3aT. A series expansion valid for large tip-
speed ratio X is: 
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For any tip speed ratio, X, the local speed ratio is 

x = Xr/R .The parameter a is determined from Eq. 
(10), and hence φ from Eq. (11), the product ccl 
from Eq. (12), and Cp from one of the Eqs (13) 
through (16).  

To obtain a single point optimum including the 
effects of drag, Stewart begins by driving local 
power coefficient: 
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which, by using W² = V0²(1 – a) + r²Ω²(1 + a’)² 
and Eq. (4) to eliminate x², reduced to Cp’ =  
(1–a)²(1+cot²φ)axλ(sinφ–εcosφ). Then, eliminating 
λ and expanding 1/(cotφ + ε)) in Taylor’s series of 
two terms, there results: 
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The last term 1 + ε tanφ is quite small, 
improving the accuracy less than 1 percent for ε = 
0.01 and φ = 40 degree. Thus, in most cases, it may 
be neglected, leaving: 
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Since the optimum value of a is found to be quite 

insensitive to changes in ε, this implies that Cp’ 
decreases monotonically as ε increases. By defining 
local Froude efficiency, ηF’ = (27/16) Cp’ we can relate 
the performance of each blade element to the ideal value 
of unity. 

After eliminating a’: 
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For small ε this is closely given by: 
 

2tan 1 secx aφ = − φ    (21)      
 
If the function, F = a(1 – a)(tanφ – ε), is then 

maximized using dF/dφ = 0, with the relation between a 
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and φ given implicitly by Eq. (20), there results a 
quadratic equation, as follows: 
 

2 2tan (1 ) sec2
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Solving this quadratic, the optimal value of a 

including the effect of drag is given by 
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Thus a single point optimization of a rotor- blade 

element, given φ and ε, proceeds as follows: 
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Aerodynamic Design 
 

The aerodynamic design of optimum rotor blades from a 
known airfoil type means determining the geometric 
parameters such as chord length distribution and twist 
distribution along the blade length for a certain tip-
speed ratio at which the power coefficient of the rotor is 
maximum. For this reason, firstly the change of the 
power coefficient of the rotor with respect to tip speed 
ratio should be figured out in order to determine the 
design tip speed ratio, X corresponding to which the 
rotor has maximum power coefficient. The blade design 
parameters will then be according to this design tip 
speed ratio.  

Examining the plots between relative wind angle and 
local tip speed ratio for a wide range of glide ratios 
gives us a unique relationship when the maximum 
elemental power coefficient is considered, and this 
relationship can be found to be nearly independent of 
glide ratio and tip loss factor. Therefore, the general 
relationship can be obtained between optimum relative 
wind angle and local tip speed ratio which will be 
applicable for any airfoil type. 
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Equation (24) reveals after some algebra (Hau, 

2006): 
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Twist distribution can be easily determined from Eq. 

(25) and, for getting the chord, the relation given in 
Chap. 8 was used (Martin & Hansen, 2008). 
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Airfoil properties 

 

In this work, eight airfoils are taken, four of them are 
four digit airfoils and other four are five digit airfoils. 
Reference (Abott & Vonoenhoff, 1958) is used for 
taking the properties of airfoils. The selection of 
airfoil is very important point in designing an 
efficient rotor (Griffiths, 1977; Hassanein et al., 2000). 
Griffiths (1977) showed that the output power is 
greatly affected by the airfoil lift-to-drag ratio, while 
Hassanein et al. (2000) recommended that the airfoil 
be selected according to its location along the blade 
to ensure its highest contribution to the overall 
performance. The numbering system for NACA wing 
sections of the four-digit series is based on the section 
geometry.  

The first integer indicates the maximum value of 
the mean-line ordinate yc in per cent of the chord. The 
second integer indicates the distance from the leading 
edge to the location of the maximum camber in tenths 
of the chord. The last two integers indicate the section 
thickness in per cent of the chord. Thus the NACA 
2412 wing section has 2 per cent camber at 0.4 of the 
chord from the leading edge and is 12 per cent thick. 
The numbering system for wing sections of the 
NACA five-digit series is based on a combination of 
theoretical aerodynamic characteristics and geometric 
characteristics.  

The first integer indicates the amount of camber in 
terms of the relative magnitude of the design lift 
coefficient; the design lift coefficient in tenths is thus 
three-halves of the first integer. The second and third 
integers together indicate the distance from the 
leading edge to the location of the maximum camber; 
this distance in per cent of the chord is one-half the 
number represented by these integers. The last two 
integers indicate the section thickness in per cent of 
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the chord. The NACA 23012 wing section thus has a 
design lift coefficient of 0.3, has its maximum camber 
at 15 per cent of the chord, and has a thickness ratio 
of 12 per cent. 

 
  

RESULT AND DISCUSSION 
 
Chord Distribution and Twist Distribution 
 

The aerodynamically optimum distribution of chord and 
twist of the rotor blades depends on the selection of a 
particular lift and drag coefficient. The lift and drag 
coefficient are taken from Abott & Vonoenhoff (1958). 
The rotor taken in this work has the same airfoil profile 
at inboard, mid-span and outboard stations of the blade. 
The chord and twist distribution for airfoils taken in this 
work are given by Figs 1–5, as we can see from Figs 2 
and 3, there is very slight difference in chord 
distribution in both four digit and five digit airfoils. The 
blades are twisted to optimize the angle of attack at 
every element of the blade, the design lift coefficient 
taken in this work is 1.1 and the tip speed ratio is 7. 
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Fig. 1 Chord Distribution for Four Digit Airfoils. 
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Fig. 3 Twist Distribution for Four Digit Airfoils. 
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Fig. 4 Twist Distribution for Five Digit Airfoils. 
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Fig. 5 NACA 2412. 
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Local Tip Speed Ratio 
  
The Tip Speed Ratio is of very important in the design 
of wind turbine blade. If the rotor of the wind turbine 
rotates very slowly, maximum wind will pass as it is 
through the gap between the rotor blades. Alternatively, 
if the rotor rotates quickly, the blurring blades will 
appear like a solid wall to the wind. Therefore, wind 
turbines are designed with optimal tip speed ratios to 
extract as much power out of the wind as possible. 
When a rotor blade passes through the air it leaves 
turbulence in its wake. If the next blade on the spinning 
rotor arrives at this point while the air is still turbulent, 
it will not be able to extract power efficiently from the 
wind. However, if the rotor span a little more slowly the 
air hitting each turbine blade would no longer be 
turbulent. Therefore, the tip speed ratio is chosen so that 
the blades do not pass through turbulent air. For small 
local tip speed ratio, axial interference factor approaches 
1/4 and rotational interference factor becomes large, 
whereas for large local tip speed ratio, axial interference 
factor approaches 1/3 and rotational interference factor 
approaches zero. Figures 5–12 gives the difference 
between the values of a and a’ with respect to local tip 
speed ratio for both four and five digit airfoils. 
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Fig. 6 NACA2421. 
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Fig. 7 NACA4424. 
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Fig. 8 NACA4412. 
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Fig. 9 NACA 23012. 
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Fig. 10 NACA 3021. 

Fig. 11 NACA 6322. 
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Fig.12 NACA 65415. 

 
 
Power Coefficient 
  
Figures 13–14 gives the elemental power coefficient of 
wind turbine blade. For calculating the elemental power 
coefficient, the blade was divided into 20 elements. As 
it can be seen from the figures, the performance of 
NACA 4424 and NACA 23012 are better then other 
airfoils. Figure 15 is showing the power coefficient of 
VESTAS V82-1.65MW. 
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Fig. 13 Power Coefficient for Five Digit Airfoils. 
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Fig. 14 Power Coefficient for Four Digit Airfoils. 
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Fig.15 Power Coefficient of VESTAS V82-1.65MW (VESTAS, 

2011). 
 
 
CONCLUSION 

 
A methodology has been presented in this work for 
designing the wind turbine blade. The approach uses the 
formulation base on Glauert annulus momentum 
equation. The selected design parameters include the 
chord and twist distribution, type of airfoil, tip speed 
ratio. A computer programme is developed for 
automating the calculations. Two families of NACA 
airfoils are taken in this work, i.e. four-digit series and 
five-digit series. For the selected airfoils and the blade, 
number the chord and twist decreases as we go from 
root to tip. The variation of the twist and chord is almost 
same for all airfoils used in this work. The values of 
axial interference and rotational interference factor are 
almost same for all airfoils taken in this work with 
respect to the local tip speed ratio. The elemental power 
coefficient calculated in this work depends on local tip 
speed ratio, axial interference factor, rotational 
interference factor, angle of relative wind form rotor 
plane, drag to lift ratio. As it can be seen from Figs 13–
14, the elemental power coefficient of airfoils NACA 
4412 and NACA 23012 are higher than other airfoils. 
With the help of comparison between the Figs 13–15, it 
is easy to understand that the power coefficient in the 
present work is more. 
 

Nomenclature  
 
a =Axial interference factor 
a’ = Rotational interference factor 
B = Number of blades 
c = Chord 
Cl = Section lift coefficient 
Cd = Section drag coefficient 
r = Local blade radius 
A = Rotor swept area 
F = Prandtl loss factor 
w = Local tangential wind velocity at rotor plane 
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u = Wind speed through rotor plane 
x = Local speed ratio 
X = Tip speed ratio 
V0 = Free-stream wind velocity 
Cp = Power coefficient 
ε = Drag/lift ratio 
α = Blade segment angle of attack 
θ = Angle of blade chord with rotor plane 
φ = Angle of relative wind from rotor plane 
Ω = Rotor angular velocity 
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