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Abstract: The data collected from the operation of existing storage reservoirs, could offer 

valuable information for the better allocation and management of fresh water rates for 
future use to mitigation droughts effect. In this paper the long-term Dez reservoir 
(IRAN) water rate prediction is presented using probability matrix method. Data is 
analyzed to find the probability matrix of water rates in Dez reservoir based on the 
previous history of annual water entrance during the past and present years(40 years). 
The algorithm developed covers both, the overflow and non-overflow conditions in the 
reservoir. Result of this study shows that in non-overflow conditions the most exigency 
case is equal to 75%. This means that, if the reservoir is empty (the stored water is less 
than 100 MCM) this year, it would be also empty by 75% next year. The stored water 
in the reservoir would be less than 300 MCM by 85% next year if the reservoir is 
empty this year. This percentage decreases to 70% next year if the water of reservoir is 
less than 300 MCM this year. The percentage also decreases to 5% next year if the 
reservoir is full this year. In overflow conditions the most exigency case is equal to 
75% again. The reservoir volume would be less than 150 MCM by 90% next year, if it 
is empty this year. This percentage decreases to 70% if its water volume is less than 
300 MCM and 55% if the water volume is less than 500 MCM this year. Result shows 
that too, if the probability matrix of water rates to a reservoir is multiplied by itself 
repeatedly; it converges to a constant probability matrix, which could be used to predict 
the long-term water rate of the reservoir. In other words, the probability matrix of series 
of water rates is changed to a steady probability matrix in the course of time, which 
could reflect the hydrological behavior of the watershed and could be easily used for 
the long-term prediction of water storage in the down stream reservoirs. 
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INTRODUCTION 
 

As water resources become limited while population is 
growing in the arid and semi-arid regions, there will 
always be a need to develop more water resources. One 
of the most promising avenues for addressing water 
shortfalls in the recent years is water management and 
incentive policy reform to enhance the efficiency of 
existing water use. Efficiency of water use in the 
watersheds depend upon improvements in water-saving 
technologies, governing water allocation, water rights 
and water quality (Rosegrant et al., 2002).  

Drought and shortage of fresh water is currently an 
important limitation of water resources development. 
While in last decades a great deal of effort is 
increasingly diverted towards the use of poor quality 
water, the issues related to the storage and management 
of fresh water have not yet been properly addressed. 
The regulation of stochastically fluctuating flows of a 
natural stream by the conservation storage of a reservoir 
is a classical problem, known for thousands of years.  

Many studies have been performed with many 
different methods and different results for the 
relationship between storage capacity and target draft, 
which is defined as firm yield for a failure-free 
operation over a fixed service period. After Rippl 
(1883) originated the classical mass curve analysis, 
many innovative and astonishingly different approaches 
were put forth by many notable researchers, a few of 
whom are: Hazen (1914), Hurst (1951), Moran (1959), 
Fiering (1963; 1965), Hardison (1966), U.S. Army 
Corps of Engineers (1975), McMahon and Mein (1978), 
Klemes (1979), and Vogel & Stedinger (1987).Various 
definitions of yield and risk or reliability of obtaining 
this yield from a reservoir have been suggested, which 
mainly depend on stream flow characteristics, storage 
capacity, evaporation losses, and reservoir service life. 
The data collected from the operation of the existing 
storage reservoirs, could offer valuable information for 
the better allocation and management of water rates for 
the future use.  

Others have successfully used the probability matrix 
method for different purposes. Gupton (1996) employed 
the matrix probability method through the multiplication 
of matrix by itself to obtain a two-year ratings transition 
matrix, which provides the desired default probabilities. 
Senior and Green (2004) used the probability matrix to 
generate a risk index matrix in order to improve the 
development of a decision-support scheme. Rafecas et. 
al. (2004) used the probability matrix method, by 
sorting the simulated data into a matrix, to calculate 
probability system by means of Monte-Carlo 
simulations. Rosenberg & Werman (2004) have also 
used the probability distribution matrix method to 
extract and represent the motion displacement between 

two images. Saei et al. (2009) used the improved SPA 
methods and probability matrix method and provided 
ultimately appropriate control curves to obtain various 
combinations of the quantity of demand and functional 
indices. The obtained results display a good accordance 
between the results obtained by SPA and probability 
matrix methods. There occurred the maximum 
difference between the methods in minimum 
sustainability and the minimum difference in maximum 
sustainability. Rahimi & Montasery (2011) applied 
Behavior Analysis and SPA method for analysis of store 
size of Barandvz and Nazlvchi dams. Extraction results 
were reviewed and completed by using probability 
matrix method. In this paper the long-term Dez 
reservoir (IRAN) flow data is analyzed to define an 
algorithm based on the 40 years historical annual inflow 
data in Dez reservoir. Investigation has been conducted 
for both, the overflow and non-overflow conditions in 
reservoirs. 

 
MATERIALS AND METHODS 
 
Study area 
 
The Dez Dam is a large hydroelectric dam built in Iran 
in 1963 by an Italian consortium. The dam is on the Dez 
River, the closest city being Dezful the only way to 
access the dam in the Northwestern province of 
Khuzestan. It is 214 m high, making it one of the 
highest in the world, and has a reservoir capacity of 
3,340 million cubic meters. At the time of construction 
the Dez Dam was Iran’s biggest development project. 

 
Data 
 
The annual inflow rate during the past forty years is 
tabulated at Table 1. The data in Table 1 has been 
categorized in eight groups according to the flow rates 
ranging from 101 to 520 million cubic meters (MCM). 
Table 2 shows the eight groups and the related flow 
rates. 
 
Reservoir specification and policy 
 
Suppose the capacity of a storage dam is m unit, and the 
rate of inflow to the reservoir in the nth year is yn. 
Therefore, yn = 1 indicates that the ratio of inflow to the 
reservoir would be 1/m in the nth year of operation. 
Likewise yn = 2 shows that the ratio of inflow to the 
reservoir would be 2/m in the nth year of operation. 
Thus, the ratio yn = m denotes to a full reservoir in the 
nth year of the operation. The storage or release of 
water depends on the rate of domestic, industrial, 
agricultural and environmental demand from the 
reservoir.  
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Table 1. The annually inflow rate during past forty years 

NO. 1 2 3 4 5 6 7 8 9 10 
Year 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 

Flow-rate 
(MCM) 

224.05 161.24 150.28 338.46 341.34 138.58 279.80 357.89 189.07 265.48 

NO. 11 12 13 14 15 16 17 18 19 20 
Year 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 

Flow-rate 
(MCM) 

269.21 302.02 248.94 230.77 267.83 374.38 259.48 245.09 232.80 198.35 

NO. 21 22 23 24 25 26 27 28 29 30 
Year 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 

Flow-rate 
(MCM) 

205.64 327.70 385.07 253.20 249.81 199.59 226.25 447.87 343.68 233.55 

NO. 31 32 33 34 35 36 37 38 39 40 
Year 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 

Flow-rate 
(MCM) 

235.88 278.35 267.42 121.82 169.84 214.48 253.41 295.65 313.49 291.18 

 
Table 2. The category of annual inflow rates 

Flow-rate 
(MCM) 

Class Frequency Percentage 

< 100 0   
101-150 1 2 5.0 
151-200 2 6 15.0 
201-250 3 11 27.5 
251-300 4 11 27.5 
301-350 5 6 15.0 
351-400 6 3 7.5 
401-450 7 1 2.5 

> 450 8   
 
 
 
Ordaining probability matrix  
 
Considering the annul demand (including evaporation 
and leakage) amounts to 800 MCM, if the water 
entrance rate to the reservoir is less, all water is released 
in the river for down stream use. However, if the water 
entrance rate to the reservoir is more than 800 MCM, 
the 800 MCM would be released and the rest is stored in 
the reservoir. For example, an annual inflow of 1000 
MCM water to a reservoir would result in 200 MCM 
storage in the reservoir, and 800 MCM release in the 
river for the utilization.  

Now, if x is the volume of the stored water in the 
reservoir at the end of each year, then xn and x(n+1) refer 
to the volume of stored water in the reservoir at the end 
of nth and (n+1)th year, respectively. In other words, 
x(n+1) is the volume of stored water at the end of nth year 
(xn) plus the volume of inflow in the (n+1)th year (y(n+1)) 
minus the volume of released water in the (n+1)th year. 
In order to define the algorithm of stored water P from 
the nth to (n+1)th year the following equation will hold:  
 

Pij = P{x(n+1) = j | xn = i} (1) 
 
where i and j are the units of water in the reservoir at the 
end of nth and (n+1)th year respectively. Using Eq. (1), 
the probability of various conditions may be calculated. 
If the storage capacity of a full and empty reservoir is 
assumed as 4 and 0 units, respectively, the probability 
of other cases such as P00, P10, P11, P20, P21 and P44 may 
be calculated as follows: 
 
a. P00: The possibility of reservoir being empty at the 

end of this year (i = 0) and next year (j = 0); 
  
P00 = P{x(n+1) = 0 | x(n) = 0}  
P00 = P[y(n+1)  4] 
P00 = P[y(n+1) = 0] + P[y(n+1) =1] + P[y(n+1) =2] + P[y(n+1) 
= 3] + P[y(n+1) = 4] 
P00 = 0% + 5% + 25% + 25%  + 15% = 70% 
 
b. P10: The possibility of reservoir with one unit stored 
water (i = 1), being empty next year (j = 0); 

 
P10 = P{x(n+1) = 0 | x(n) = 1}  
P10 = P[y(n+1)  3] 
P10 = P[y(n+1) = 0] + P[y(n+1) =1] + P[y(n+1) =2] + P[y(n+1) =3] 
P10 = 0% + 5% + 25% +25% = 55% 
 
c. P11: The possibility of reservoir with one unit stored 
water (i=1), having one unit stored water next year too 
(j=1); 
  
P11 = P{x(n+1) = 1 | x(n) = 1} 
P11 = P[y(n+1) = 4] = 15% 
 
d. P20: The possibility of reservoir with two units stored 
water (i = 2), being empty next year (j = 0); 
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P20 = P{x(n+1) = 0 | x(n) = 2} 
P20 = P[y(n+1)  2]  
P[y(n+1) = 0] + P[y(n+1) =1] + P[y(n+1) =2] = 0% + 
5%+25% = 30%  
 
e. P21: The possibility of reservoir with two units stored 
water (i = 2), having one unit stored water next year (j = 
1); 
  
P21 = P{x (n+1) = 1 | x(n) = 2}   
P21 = P[y (n+1) = 3] = 25% 
 
f. P44: The possibility of reservoir being full this year (i 
= 4), and next year too (j = 4); 

 
P44 = P{x (n+1) = 4 | x(n) = 4} 
P44 = P[y (n+1)  4] 
P44 = P[y (n+1) = 4] + P[y (n+1) =5] + P[y (n+1) =6] + P[y (n+1) >6] 
P44 = 15% + 15% + 10% + 5% = 45% 

 
g. Considering the other possibilities, the probability 
matrix of the water rates in the reservoir Pij is:  
 















































5.525.271550

255.275.27155

10155.275.2720

5.25.7155.275.47

05.25.71575

4443424140

3433323130

2423222120

1413121110

0403020100

PPPPP

PPPPP

PPPPP

PPPPP

PPPPP

[1]  

 
Many conclusions may be drawn from matrix [1], for 
example:  
 
a. P12 = 15%. In the matrix means that, if the 

reservoir water rate is between 100-150 MCM (1 
unit) this year and between 150-200 MCM (2 
units) next year, its possibility is equal to 15%. 

b. P44 = 52.5%. In the matrix means that if the 
reservoir is full (water volume is more than 500 
MCM) this year, it would be full by 52.5% 
probability next year too.  

c. P00 is the most exigency case, with a probability 
equal to 75%. This means that, if the reservoir is 
empty (the stored water is less than 100 MCM) 
this year, it would be also empty by 75% next 
year.  

d. The stored water in the reservoir would be less 
than 150 MCM by 90% (75% + 15%) next year if 
the reservoir is empty this year. This percentage 
decreases to 63% (47.5% + 15.5%) next year if 
the water of reservoir is less than 150 MCM this 
year. The percentage also decreases to 5% next 
year if the reservoir is full this year. 

 
 

Permanent probability matrix 
 
Now, if matrix [1] is multiplied by itself repeatedly, the 
long-term probability matrix is found. A permanent 
condition is resulted by nineteenth year if the 
probability matrix is accounted for the future years. In 
this case the nineteenth year probability matrix is: 
 















































910141848

910141848

910141848

910141848

910141848

5.525.271550

255.275.27155

10155.275.2720

5.25.7155.275.47

05.25.71575
19

  [2] 

 
Many conclusions are obtained from matrix [2], for 
example: 
 
a. It is seen that in each row of matrix [2] the 

percentages are equal. This means that, the present 
water volume of reservoir does not have any effect 
on the reservoir’s water rate ten years later.  

b. The most exigency case is the first column of the 
matrix, with a probability equal to 48%. This means 
that, the reservoir would be empty (less than 100 
MCM) by 48% nineteenth years later.  

c. The water volume in the reservoir would be less 
than 150 MCM by 66% (48% + 18%), 200 MCM by 
80% (48% + 18% + 14%), and 250 MCM by 90% 
(48% + 18% + 14% + 10%) ten years later. 

d. The water volume in the reservoir would be more 
than 250 MCM by 9% nineteenth years later. 

 
Ordaining probability matrix considering overflow 
 
What was discussed before denotes the probability 
matrix of non-overflow condition. However, if the 
reservoir is supposedly full, we may have over flow 
when the inflow rate increases. To account the real 
rates, the probability matrix will be as follows: 
 















































095500

04040155

0255.275.2720

010155.275.47

05.25.71575

4443424140

3433323130

2423222120

1413121110

0403020100

PPPPP

PPPPP

PPPPP

PPPPP

PPPPP

  [3] 

 
This matrix (3) shows that, for example:  
 
a. P00 is the most exigency case, with a probability 

equal to 75% again. (Compare it with matrix [1]).  
b. The last column of matrix [3] is zero. It means that 

the reservoir will not be full next year because of 
overflow. In other words, the possibility of being full 
has been completely decreased. 
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c. The reservoir volume would be less than 150 MCM 
by 90% (75% + 15%) next year, if it is empty this 
year. This percentage decreases to 75% (47.5% + 
27.5%) if its water volume is less than 150 MCM and 
47.5% (20% + 27.5%) if the water volume is less 
than 200 MCM this year. 

 
Permanent probability matrix considering overflow 
 
Now, if matrix [2] is multiplied by itself repeatedly, the 
long-term probability matrix is found considering 
overflow. In this case the eleventh year probability 
matrix is: 
 















































012161952

012161952

012161952

012161952

012161952

095500

04040155

0255.275.2720

010155.275.47

05.25.71575
11

 [4] 

 
From this matrix (4) we could learn that, for example:  
 
a. The most exigency case is the first column, with a 

probability equal to 52% which is greater than the 
first column of matrix [2]. It means that, the reservoir 
would be empty by 52% at eleventh year due to the 
overflow.  

b. The reservoir volume will be less than 150 MCM by 
71% (52%+19%) in the tenth year.  

c. The last column of matrix [4] is also zero. (Compare 
it with matrix [2]). It means that the reservoir will not 
be full in the eleventh year because of overflow. In 
other words, the possibility of being full is zero ten 
years later. 

 
CONCLUSION 
 
A water management technique has been developed and 
presented based on the long-term probability matrix of 
water volume in the storage reservoir for both, with and 
without reservoir spill. This method uses the past long-
term reservoir volumes to predict its future behavior. 
Data has been analyzed to find the algorithm for the 
probability matrix of water rates in Dez reservoir using 
the 40 years historical annual inflow data. The results 
have shown that by setting up the long-term probability 
matrix, the future behavior of the reservoir could be 
predicted. Since in the regulated rivers the down stream 
domestic, industrial, agricultural and environmental 
water needs are highly dependent upon the available 

stored water, therefore this technique could highly 
improve the operation of a storage reservoir by 
predicting available water in future years. 
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