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Abstract: Knowledge of sediment yield and the factors controlling it provides useful information 

for estimating  erosion intensities within river basins. The objective of this study was to 
build a model from which  suspended sediment yield could be estimated from ungauged 
rivers using computed sediment yield and  physical factors. Researchers working on 
suspended sediment transported by wadis in the Maghreb are  usually facing the lack of 
available data for such river types. Further study of the prediction of sediment  transport 
in these regions and its variability is clearly required. In this work, ANNs were built 
between  sediment yield established from longterm measurement series at gauging 
stations in Algerian catchments and  corresponding basic physiographic parameters such 
as rainfall, runoff, lithology index, coefficient of  torrentiality, and basin area. The 
proposed Levenberg-Marquardt and Multilayer Perceptron algorithms to  train the 
neural networks of the current research study was based on the feed-forward 
backpropagation  method with combinations of number of neurons in each hidden layer, 
transfer function, error goal.  Additionally, three statistical measurements, namely the 
 root mean square error (RMSE),  the coefficient of  determination (R²), and the 
efficiency factor (EF)  have been reported for  examining the forecasting  accuracy of the 
developed model.  Single plot displays of network outputs with respect to targets for 
training  have provided good performance results and good fitting . Thus, ANNs were a 
promising method for  predicting suspended sediment yield in ungauged Algerian 
catchments. 
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INTRODUCTION 

Rainfall and runoff, the main erosion agents, provoke 
both the detachment and transportation of the surface 
soil materials to surrounding rivers. Quantification of 
sediment load is becoming an important issue involving 
in sustainable development of water resources system. It 
is interesting with regard to reservoir sedimentation, 
river utilization as well as biological sustainability in the 
whole river basin. Suspended sediment load (SSL) is a 
major portion of the total load transported by streams 
(Walling & Fang, 2003) and commonly accounts for 
85% to 95% (Babinski, 2005; Zhang et al., 2011). 

The most reliable way in estimating suspended 
sediment load is the use of its observed records, but 
sediment sampling is very difficult and requires 
performance and costly measurement tools because of 
its significant fluctuation within the river section 
(Morris & Fan, 1998). These constraints have led to low 
frequency of sediment observation in Algeria where it is 
required to estimate sediment yield from basins that 
have hydrometric stations with a record of suspended 
sediment data. In response to this problem, different 
empirical methods, based on different hydrological 
variables and terrain attributes, have been taken into 
consideration.  

Regional regression models have been used to 
predict long-term mean annual suspended sediment load 
from readily obtained basin characteristics Roman et al. 
(2012). Thus, investigations have tried to explain 
sediment yield in terms of the combined effect of 
morphometric, climatic, and hydrologic variables of 
drainage basins. These relationships have often been 
presented as single or multiple regression models (e.g., 
Demmak 1982; Ferraresi 1990; Probst & Amiotte 
Suchet, 1992; Bray & Xie, 1993; Mulder & Syvitski, 
1996; Hovius, 1998; Ludwig & Probst, 1998; Harrison, 
2000; Restrepo et al., 2006). Such models would enable 
estimation of suspended sediment load at most 
ungauged river locations.  

Close examination of the most regional multivariate 
equations has shown that because of using simplified 
linear, nonlinear and composite relationships between 
sediment yield and river basin parameters, the proposed 
empirical equations would yield high uncertain results 
or might suffer considerable inaccuracies. Alternative 
approach to the multivariate relationships is the 
utilization of data-driven models. Artificial neural 
network (ANN) is the most well-known and powerful 
conceptual framework and it has been proved to be 
useful in modelling complex hydrologic processes or 
non-linear systems such as sediment transport (Nagy et 
al., 2002; Sudheer et al., 2003; Cigizoglu, 2004; Sarangi 
& Bhattacharya, 2005; Kakaei Lafdani et al., 2013). 

The main advantage of the ANN approach over 
traditional methods is that it does not require the 
complex nature of the underlying process under 
consideration to be explicitly described in a 

mathematical form Sarangi et al. (2005). ANNs are 
capable of correlating complex multi-parameter datasets 
without any prior knowledge of the relationships 
between the parameters. The use of the conceptual 
model can overcome the low performance often met in 
the regression method and improve the accuracy of 
rivers suspended sediment load estimates. 

In comparison to regional flow models undertaken in 
Algeria, there are unfortunately few studies that have 
sought to model mean annual suspended sediment load 
on a regional scale using geomorphic parameters as 
inputs. We were unable to find any recent regional 
regression or stochastic models of sediment transport 
developed strictly for drainage basins in Algeria. 

The primary objective of this study was to develop 
readily applied regional models of long-term river 
suspended sediment load for ungauged Algerian 
catchments. For the evaluation of the potential for 
developing regional models of suspended sediment 
load, we have used available basin characteristics, 
including morphology, topography, lithology, climate, 
hydrology, with available sediment load data. In this 
study, an artificial neural network method was applied 
to find a suitable model for identifying the relationship 
between the sediment yield and the possible geomorphic 
parameters of the ungauged Algerian river basins.  
 
STUDY AREA 

Catchments of northern Algeria constitute a 
Mediterranean domain where different forms of erosion 
are highly distributed. Most Algerian wadis are 
developed in areas of young and rugged terrain with 
usually a very complex geological structure. In the Tell, 
the hillslopes formed in marly formations of Cretaceous 
or Tertiary clay layers favour the spatial extension of 
gullies and mass wastings (Kouri & Vogt, 1996).  

Algeria's climate is a transitional climate between 
humid temperate climate and desert climate. It varies 
from the Mediterranean in the north to semi-arid in the 
south (desert-like in the Sahara). The Algerian basins 
are dominated by three climate regimes: coastal 
temperate climate, Tellian Atlas climate, high plateaus 
climate. 

This study was based on data from 39 catchments 
representing different physico-climatic regions of 
northern Algeria (Fig. 1). Selected basins have areas 
that extend from 93 to 4126 km ² and receive average 
rainfall ranging between 227 mm and almost 900 mm. 

The chosen catchments lie in major basins of the 
north part of Algeria (Fig. 1). The major basin of 
Chellif, located in the northwest of Algeria, is mainly 
covered by alluvial soils that are derived from marl or 
clay, which makes the area very susceptible to erosion. 
In this basin, we selected six catchments (Table 1) that 
are distinguished by a high sensibility to erosion (marl 
and clay formations).  
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However, the Deurdeur and Haddad catchments 
show relatively resistant limestone and sandstone.  

The high plateaus, Soummam, Chott Melrhir and 
Chott Hodna basins are considered endorheic and are 
located on either side of the Mountains of Aurès. These 
basins have an arid climate with temporary wadi flows. 
They are enclosed in an area between the Tellian and 
Saharan Atlas. In general, these regions are 
characterized by a large distribution of moderately 
resistant rocks such as Oligocene clayey sandstone, 
Cretaceous series of marl, and limestone (e.g. Ksob and 
Bou Sellam catchments). Soubella catchment is 
composed mostly of Oligocene sandstone and Jurassic 
limestone. 

The Cheliff basin is subject to a Mediterranean 
climate with an average rainfall varying between 347 
mm and 472 mm. The average annual rainfall received 
in the high plateaus and Chott Melrhir basins varies 
between 59 mm and 422 mm. Consequently, the runoffs 
are very low where the runoff coefficients could reach 
7%. These basins are encountering degraded vegetation 
that consists of scattered clumps of plants, steppes alfas, 
and bushes.  

The Oran Coastal region is dominated by massive 
and highly resistant dolomitic and Jurassic limestone in 
the Mountains of Tlemcen. Erodible rocks are mainly 
marl of Miocene and marly conglomerate of Pliocene. 
The Mekerra catchment (Tafna basin) is composed 
principally by fractured sandstone and carbonate 
formations. The climate of these basins is semi-arid and 
is characterized by a greater continentality given the 
latitude and east-west exposure of reliefs that limit the 
passage to the interior rainfall disturbance of oceanic 
(Atlantic) and Mediterranean origin. Thus, forests and 
bushes in this region are poorly developed, occupying 
only the mountains. 
 

 
Fig. 1 Location map of the study great basins including  
           the selected  catchments in northern Algeria.   

 

The basins of the Constantine Coastal region and 
Seybouse are characterized by a considerable 
distribution of resistant rocks such as Oligocene 
sandstone. Aggressive flows were able to scar on 
erodible rocks by carrying huge amounts of suspended 
sediment in the wadis of Mellah, Saf Saf, and Kebir 
East. In addition, the coastal area related to the Algiers 
coastal basins is affected by erosion as a result of 
lithological and morphoclimatic conditions. The 
lithological formations in Tleta catchment show a 
dominance of erodible rocks (marls of Eocene and clay 
of Oligocene). Limestones, sandstones and 
conglomerates are the resistant rocks that occupy most 
of the Chouly basin. The importance and regularity of 
rainfall result in a relatively dense vegetation cover in 
these coastal basins, where precipitation ranges between 
559 and 760 mm and can reach 1800 mm in the 
northeastern part.  
 
DATA AND METHODS 

In this study the way of regionalizing the yearly average 
sediment yield was considered. In this approach, the 
average itself was directly regionalized, as a function of 
basin physiographic characteristics. With this 
procedure, the drawbacks were overcome and the long-
term averages were widely preserved, obviously at the 
cost of detail and cause-effect information Ferraresi 
(1990). 
 
Database availability   
    
The mathematical expression f of the relationship 
between SY, long-term yearly average sediment yield 
(t km-2 year-1) and some physiographic variables V, 
expressing the database propensity of the respective 
river basins to erosion, was usually realized by means of 
statistical methods; 

                    SY = f (V1, V2,…., Vi.,...,Vn)                (1)               

Equation (1) was based on sediment averages 
computed from thirty nine hydrometric stations having 
suspended sediment records with lengths in the range of 
7 to 40 years and 20 to 45 year-rainfall stations were 
used for the purposes of this study. The selection of 
catchments was made taking into account the 
consistency and quality of available data on suspended 
sediment transport (Table 1).  

The overall sediment response was likely to be 
influenced by features such as mean annual rainfall (P), 
coefficient of torrentiality (CT), annual runoff (R), 
catchment area (A). Initial screenings were carried out 
to reject parameters weakly correlated with the 
dependent variable and moderately or highly correlated 
with other independent variables. Table 1 has included 
also the values of the variables associated with each 
catchment for the adopted statistical analyses. 
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We have obtained annual water discharge and 
suspended sediment load data from different studies 
either as unpublished thesis (Demmak, 1982; Bouanani,  
2005) or research articles (Khanchoul et al.,  2009 and 
2012; Cherif et al., 2009; Achite & Ouillon, 2007; 
Ghenim et al., 2008). Basically, the river discharge and 
suspended sediment concentration data were based on 
daily measurements and the application of sediment 
rating curves. Sediment load calculations were based on 
daily sediment concentration data and cross 
multiplication with water discharge (Fergusson, 1986; 
Jansson, 1997). 

Some of physical variables for the selected 
catchments were obtained from the previous mentioned 
studies and others were reworked, including lithological 
maps and all existing hydrological and meteorological 
databases. An available 30 arc second digital elevation 
model (DEM) with a resolution of 1×1 km associated 
with Watershed Modelling System program, was used 
mainly in the Seybouse, Constantine Coastal basins to 
calculate morphometric variables such as catchment 
area, river length, stream frequency, relief parameters. 

 
STATISTICAL APPROACH 

Simple correlation relationships 

In order to explore which meaningful factors control 
sediment yield in the selected basins, series of 
relationship calculations were done using data from the 
39 catchments. Single correlations were performed and 
Pearson correlation coefficients were calculated for all 
variable pairings for catchment properties. Here we 
have to examine a set of estimator variables, select those 
that are most efficient at explaining the variance in a 
response variable, and build them into a model. 

To analyse the regional variation of sediment yield 
with the physical characteristics of the basins, a 
combination of several controls as artificial neural 
networks were implemented on data listed in Table 1. 

 
Neural networks 

Neural Networks (ANNs), which emulate the parallel 
distributed processing of the human nervous system, 
have proven to be successful in dealing with 
complicated problems such as function approximation 
and pattern recognition Sarangi et al. (2005). The stored 
information processing elements are interconnected and 
organized in layers. The connection strengths (network 
weights) can be adapted such that the output of the 
network matches a desired response. 

The basic neural network employed in this study 
possessed a three-layer learning network consisting of 
three distinctive layers, the input layer, where the data 
were introduced to the ANN, the hidden layer, where 
data were processed, and the output layer, where the 
results of ANN were produced. The proposed 

Levenberg–Marquardt algorithm (LM) and Multilayer 
Perceptron (MLP) to train the neural networks of the 
current research study were based on the feed-forward 
backpropagation method (FFBP) using MATLAB and 
STATISTICA version 8 programs. Further, the 
networks were trained with a backpropagation (BP) 
algorithm, which is capable of nonlinear pattern 
recognition and memory association. 

 
Levenberg-Marquardt Algorithm 

The Levenberg-Marquardt is a popular algorithm known 
for its fast convergence and is based on least-square 
estimation Levenberg (1963) . The Levenberg-
Marquardt optimization algorithm represents a 
simplified version of Newton’s  method applied to the 
training multilayer neural networks.  It is fast and has 
stable convergence and it is able to obtain lower mean 
square error than any other algorithms. The running of 
the network training can be considered as a set of 
weights that minimized  the error (em) for all samples in 
the training set (Tr). If the performances function is a 
sum of  squares of the errors as: 

E(W )= mTrPeyd
p

p
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)²,(
2

1
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      (2)                 

where Tr is the total number of training samples, m is 
the number of output layer neurons, W  represents the 
vector containing all the weights in the network, yp is 
the network output, and dp is  the desired output.    

The Levenberg-Marquardt method is a powerful 
technique used to solve nonlinear least squares 
problems. Nonlinear least squares methods involve an 
iterative improvement to parameter values in order to 
reduce the sum of the squares of the errors between the 
function and the measured data points. It is recognized 
as achieving much higher performance by converging 
more often and by making training faster. The 
backpropagation training has involved information 
processing in two directions, the feed-forward of the 
input information and the backpropagation of the error. 

The Levenberg-Marquardt curve-fitting method is 
distinguished by its combination of two minimization 
methods: the gradient descent method and the Gauss-
Newton method. In the gradient descent method, the 
sum of the squared errors is reduced by updating the 
parameters in the direction of the greatest reduction of 
the least squares objective. In the Gauss-Newton 
method, the sum of the squared errors is reduced by 
assuming the least squares function in locally quadratic, 
and finding the minimum of the quadratic. 

 
Multilayer Perceptron 

The Multilayer Perceptron (MLP) networks are used in 
a variety of problems especially in forecasting because 
of their  inherent capability of arbitrary input–output
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Table 1.  Properties of the selected catchments in north of Algeria. 

Great basins Catchments 
 

P  
(mm) 

Morphometric parameters  
SY    

(T/km2/y) 
OC CT 

R 
(mm) 

IL  
(%) 

A  
(km²) 

         
Tafna Sebdou 412.60 589.58 15.20 180.80 25.00 256 938.00
 Mouillah 357.00 123.68 0.01 20.40 12.00 2650 364.00
 Isser 393.00 399.67 2.10 37.30 40.00 1140 180.00
 Sikkak 483.00 1377.54 1.90 93.74 33.00 463 170.00
Chellif Haddad 245.00 280.36 13.30 11.53 10.00 470 262.45
 Abd 250.00 72.15 18.00 12.72 45.90 2480 136.00
 Mina 276.00 78.74 27.34 16.36 20.00 4126 433.26
 Ebda 938.00 864.03 94.60 338.30 31.00 270 1875.00
 Deurdeur 563.00 570.30 17.80 85.50 15.30 500 273.39
 Rouina 417.40 86.20 25.40 67.60 49.70 865 1151.11
 Sly 457.60 253.30 63.20 122.00 60.00 1225 2037.33
 Rhiou 375.20 145.80 45.60 56.14 58.00 1890 1821.73
Seybouse Mellah 687.47 542.00 25.20 184.13 34.70 551 529.91
 Ressoul 592.20 606.80 17.40 120.27 18.00 103 210.23
 Bouhamdane 572.74 350.41 11.22 67.35 23.89 1105 262.77
 Cherf 289.00 17.91 14.76 10.73 46.20 1710 350.00
Constantine Saf Saf 616.69 823.00 21.24 135.57 16.10 322 532.57
Coastal Kébir ouest 639.51 56.70 12.20 130.45 8.30 1130 292.40
region Kébir est 750.00 199.20 16.30 289.00 16.70 681 871.00
 Zit Emba 594.50 219.10 15.10 74.20 19.30 485 197.50
Algiers Allalah 599.40 190.40 24.00 120.20 73.00 295 4653.84
Coastal-Isser Hachem 631.00 649.70 27.00 235.00 16.00 215 1542.10
region Bou Roumi 652.00 700.20 22.00 146.00 71.30 215 3353.51
 Djer 581.60 431.80 16.00 131.00 50.38 395 1728.61
 Chiffa 870.70 933.10 30.00 367.40 30.00 316 2451.33
 Harrach 829.70 1170.40 69.20 332.10 17.70 387 1630.35
 Bou Douaou 851.60 1772.40 46.10 310.40 12.00 93 639.64
 Assif 782.00 1008.30 6.70 256.30 11.80 300 805.65
Chott Hodna Ksob 314.00 147.60 25.20 26.84 37.90 1030 344.00
 Soubella 322.00 1115.10 6.00 20.90 15.90 176 35.66
Chott Melrhir Abiod 298.00 1360.00 39.90 17.40 26.40 1050 401.23
 El Arab 340.20 401.60 36.40 17.12 33.00 2005 539.12
High plateaus Reboa 420.40 540.50 7.30 70.90 26.00 296 593.57
of Constantine Gueiss 459.30 733.50 12.20 70.40 7.50 144 196.70
Oran Coastal Tleta 471.70 894.00 12.10 73.40 16.50 100 294.90
region Chouly 542.10 1530.00 21.60 105.00 1.00 170 76.22
Medjerdah Kseub 227.38 502.41 9.26 16.31 45.76 474 119.71
Soummam Bou Sellam 398.00 20.80 17.80 17.20 25.70 2350 99.10
Macta Mekerra 400.00 139.24 31.25 56.10 13.51 1890 92.62

OC: Orographic Coefficient = Hm x tang , where tang  = Hm– h /A; CT: Torrentiality coefficient, it is the product of drainage 
density and elementary thalweg frequency; IL: Lithologic index , it is the ratio of the  occupied area by marly and clayey rocks and 
the total drainage basin area;  A: Catchment area (km2); h: Minimum elevation (m); Hm: Mean elevation (m). 

 
 

mapping. They are the best performing and the  mostly 
used  network based simulation models in  hydrological 
predictions (Govindaraju & Rao,   2000). 

The  MLP is a layered feed-forward network,  which 
means that the units each  performed a biased  weighted 
sum of their inputs and pass this  activation level through 
a  transfer function to  produce their output, and the units 
are arranged in a  layered feed-forward  topology.  The 

network consists of layers of parallel processing 
elements, called neurons, with  each layer being fully 
connected to the preceding layer by interconnection 
strengths fully  connected to the preceding layer by 
interconnection strengths, known as weights. Weight 
 values are progressively corrected during a training 
process to compare predicted outputs to  known outputs 
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by using the back-propagation process to minimize the 
errors.    

Back-propagation involves two phases: a feed 
forward phase in which the external  input  information at 
the input nodes is propagated forward to a hidden layer 
node usually  through a  transfer activation function and 
then passes to the output node, and a backward  phase in 
which  modifications to the connection strengths are 
made based on the differences  between the  computed 
and observed information signals at the output units. 
The difference or  error of the  later information signals is 
minimised by adjusting the weights and biases through 
 some  training algorithm, where the error (E) calculated 
at the output is propagated back to  hidden  layer and 
finally to input layer by updating the weights of 
interconnection. The error   (E) is  defined as:  

 
              E = ½ Σk [d(O(k)]2                          (3) 

 
where d(k) is the observed output at the kth node of the 
output layer and O(k) is the  estimated  output at the kth 
node of the output layer. The newly generated signal is 
then  transferred  forward to a subsequent layer (e.g., 
either a hidden or output layer). The same  response 
 procedure is repeated for each hidden node Kuo et al. 
(2007).     

 
Neural network architecture 

One of the most critical questions when applying ANN 
for modelling, it is what architecture should be used to 
map the processes effectively. The input vectors to the 
selected ANN model, the number of hidden layers, the 
learning rule and the number of output vectors greatly 
influence the performance of the model. 

Using available data of the study catchments, trial 
and error approach was employed in the present analysis 
to select the optimal neural network architecture. In 
designing a LM and a MLP, we had to determine the 
following variables: the number of input nodes, the 
number of hidden layers and hidden nodes, and the 
number of output nodes. The input combinations that 
were tested to estimate sediment yield values were 
covering  the  geomorphological factors and the target 
layer was consisting of the unique mean annual 
 sediment yield  data.   

In this study, Tansigmoid (tansig) and pure linear 
(pureline) transfer functions were selected for the LM 
feed-forward backpropagation networks to reach the 
optimized status. Therefore, ANNs can be categorized 
into feed-forward and recurrent networks according to 
the direction of the information flow and processing. 
Detailed information about Lm was found in literature 
(e.g., Kisi 2004 ;   Adeloye & Munari, 2006; Rai & 
Mathur, 2008 ;   Okkan, 2011). The transfer function in 
MLP, which specifies a particular mathematical 
relationship, is also an  important feature responsible for 

the activation of signal transmission from the previous 
neurons.  The transfer function applied for the hidden 
layer and the output layer were identity x (linear), 
sine(x),  logistic sigmoid, hyperbolic, and exponential.    

Considering the number of the selected hydrometric 
stations and their basins, there were 39 sets of input and 
output data. In order to have good artificial neural 
network training, the data sets have been divided into 
three phases of training, validation, and testing. The 
geometric, geological, and hydroclimatological 
parameters of the chosen basins were used as the input 
data and the annual suspended sediment yields were 
employed as the output data for the phases. In this 
technique the net.divideFcn (division function) for Lm 
was set to ‘dividerand’ (the default), and the available 
data was randomly divided into three subsets.  

For model simulations, the whole dataset was 
divided into three parts: the first 70% for training and 
the remaining 30% were subdivided into 15% for testing 
and 15% for validation. The 234 input and target data 
had to be normalized before use in the ANN training 
and testing to commensurate with the upper and lower 
bound limits of the activation functions that were used 
in the hidden neurons. This has ensured fast processing 
and convergence during training and has minimized 
prediction error Rojas (1996). In this study the input and 
target data were pre-processed to scale the data between 
the range -1 and 1 using the following equation; 

           zp = 2 x
)xx(

)xx(

minmax

minp




−1                          (4)         

where, zp was the normalized or transformed data series, 
xp was the original data series, xmin, xmax were the 
minimum and the maximum value of the original data 
series respectively.

 Before an ANN could be used to perform any 
desired task, the optimal number of hidden nodes in the 
hidden layer had to be determined because they might 
allow neural networks to detect the feature, to capture 
the pattern in the data, and to perform complicated 
nonlinear mapping between input and output variables.  
It is known that the network performance and efficiency 
are very much dependent on the number of hidden 
neurons in the hidden layer Karunanithi et al. (1994).            
(Tang & Fishwick, 1993) investigate the effect of 
hidden nodes and find that the number of hidden nodes 
does have an effect on forecast performance but the 
effect is not quite significant. In fact, there are no fixed 
rules about the number of neurons in the hidden layer. 
However, several authors consider that networks with 
the number of hidden nodes being equal to the number 
of input nodes are reported to have better forecasting 
results in several studies (Chakraborty et al., 1992; 
Sharda & Patil, 1992; Tang & Fishwick, 1993). For 
selecting the number of hidden nodes, we started with 1 
hidden node and gradually increased the number until a 
network of 5 hidden nodes with least mean squared 
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error that was attained. Further increase in hidden nodes 
could produce high error and poor network 
performance. 

Although there can be many performance measures 
for an ANN process like the modelling  time and training 
time, the most important measure of performance is the 
prediction accuracy  that can be achieved beyond the 
training data. An accuracy measure is often defined in 
terms  of the forecasting error which is the difference 
between the actual (observed) and the  predicted value.  
Thus, ANNs were trained with a set of known input and 
output data. The training process was repeated with a 
number of different sets of shuffled data. RMSE was 
noted for each analysis and cross validation was also 
performed to estimate R² values. The network structure 
providing the best result, i.e., the minimum root mean 
square errors, RMSE was indicated in equation 5. The 
model efficiency factor EF of observed and predicted 
values were also estimated for different  predictions on 
validation datasets. The best model was selected based 
on the EF value  approaching one. The model efficiency 
factor was estimated for all the validation sets using the 
 relation in equation 6. Both performance measures were 
as follows: 

RMSE  =  
N

YSSY
N

i

ii



1

)²(


                   (5) 
 

                EF = 1 -  













N

i

i

N

i

ii

SYSY

YSSY

1

1

)²(

)²(


                     (6)    

SYi was the observed sediment yield value; iYS


 was 

calculated sediment yield value; SY was the mean of 
observed sediment yield values, N was number of 
elements. RMSE has given a quantitative indication for 
the model error; it has measured deviation of the 
forecasted and/or simulated value from the actual 
observed value. The ideal value for RMSE has to be 
equal to zero. The best model was selected based on the 
EF value approaching one. 
 

RESULTS AND DISCUSSION 

Correlation matrix development for sediment yield 

To explore the degree of interaction of the factors that 
could control sediment yield, series of correlation 
calculations were done using data from the 39 
catchments. The coefficients of correlation represented 
in Table 2 have shown principally relatively low 
relationships of sediment yield (SY) versus mean 
rainfall, coefficient of torrentiality, runoff, lithology 
index. Contrary to what we expected, there was very  
 

Table 2. Correlation matrix between the physical variables and 
sediment yield 

      P OC CT R IL A Ds 
P 1    

OC 0.42 1    
CT 0.40 0.18 1   
R 0.92 0.45 0.48 1  
IL -0.15 -0.34 0.17 -0.13 1 
A -0.52 -0.58 0.00 -0.49 0.10 1
Ds 0.42 -0.03 0.40 0.44 0.64 -0.22 1

 
low relationship between sediment yield and both 
drainage area and orographic coefficient respectively for 
the selected catchments. Thereby, the later parameter 
has been omitted from the analysis because of its 
insignificant effect on the relationship. 

According to Hovius (1998) the selected estimator of 
runoff refers to the relative importance of the fluvial 
transport component in the sediment routing system. 
Moreover, the specific runoff determines to a certain 
extent the transport capacity of the fluvial system and 
may also refer to the amount of water available for 
hillslope erosion. Runoff (R) was well correlated with 
mean annual precipitation (P) and poorly correlated 
with the lithology index. The prediction of sediment 
yield (SY) is complicated by the interaction of 
controlling variables, human impact on the hydrological 
system, and by scale effects associated with different 
basin sizes (Walling & Webb, 1983). The high degree 
of spatial variability in sediment yield and catchment 
characteristics might cause difficulty in modelling the 
controlling relationships across the whole dataset. 

 
Neural network model for sediment yield 

Five input combinations were tried to predict suspended 
sediment yield values for the 39 catchments. In all 
cases, the output layer had only one neuron, that is, the 
sediment yield, SY. After the networks had been 
calibrated and validated, their performances were 
assessed with three statistics, the minimum root mean 
square error (RMSE), EF, and coefficients of correlation 
(R). The number of neurons in the hidden layer was 
found to vary between 1 and 5. 

Application of  MLP model 

For training of Multi-Layer Perceptron (MLP) network, 
an automated neural network program  was used in 
STATISTICA version 8. The number of neurons in the 
hidden layer was  investigated by trial and error method 
with variation between 1 and 5 for each combination to 
 achieve the best network structure. To evaluate neural 
network performance, initialization of connection 
weights, training,  validation and  testing has been 
performed with five independent random trials for 
weight  initialization as listed in  Table 3.  The table has 
shown the RMSE and R of the neural network  training 
for different learning rules and transfer functions. It can 
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be seen that for most learning  rules, the exponential  
transfer functions lead to the highest coefficients of 
correlation  and least RMSE for mostly the training and 
testing processes. In fact, the optimum number of 
 neurons for all combinations  has shown that the  network 
had better structure for a model with   5 neurons. 
 
Application of Lm model 

Network training and testing were performed using the 
same data sets applied in the Lm  network. With regard 
to the form of activation function, applied in the hidden 
layer (i.e.  Tansigmoid ) and output layer (pure linear) , 
the optimum  number of neurons in the hidden  layer, 
based on several trials, was found to be 5 neurons 
(Table 3). Values of R in the training, testing, and 
validation phases varied between 0.915 and 0.995.   

 This is an indication of the model’s performance. 
Kachroo (1986) reported that  a model can be  considered 
satisfactory if R² value exceeds 90% and considered 
fairly good  for R² in the  range of 80% to 90%. In this 
case, only two models with 4 neurons and 5  neurons at 
 ratio   70:15:15 have presented satisfactory model 
performance for the three training stages   (Table   3).  

The reliability of the models can be further justified 
from the RMSE values. Among these  two  satisfactory 
models, only one model showed the lowest RMSE 
values in  both training and  testing stages. Results from 
the modes of evaluation described above  confirmed the 
capability  of the 4 neurons model to predict sediment 
yield.  

 
Comparison of the neural networks 

The maximum possible model determinations (R²) and 
efficiency factor (EF), and  the  minimum root mean 
square errors (RMSE) obtained for the training ratio of 
70:15:15  were  mainly observed at neurons equal to 4 
and 5 between the observed and predicted  sediment 
yields,  with values of 0.97 for R² and EF respectively, 
0.073 and 0.043 for RMSE in  both Lm and MLP 
networks. Therefore, the two trained models have given 
the  lowest mean  square error and the   highest 
performance (coefficient of determination  and 
efficiency factor)  when compared to other algorithms 
for the different percentages of  dataset  allocations in 
Table   4.  

 
 

Table 3.  Comparing the statistical parameters for training, testing and validation results

Lm                 Training  Testing Validation Transfer functions 

Neurons   R          RMSE   R          RMSE  R          RMSE Hidden    Output              
layer        layer 

1 0.953      0.068  0.937      0.199 0.948      0.10 Tansig      Pureline 
2 0.969      0.030  0.915      0.321 0.994      0.013 Tansig      Pureline 
3 0.981      0.022  0.974      0.091 0.984      0.190 Tansig      Pureline 
4 0.995      0.004  0.956     0.045 0.993      0.086 Tansig      Pureline 
5 0.984      0.006  0.994      0.073 0.930      0.146 Tansig      Pureline 

  MLP   

1 0.930      0.053 0.999      0.054 0.937      0.053 Logistic      Tanh 
2 0.926      0.055 0.999      0.110 0.948      0.061 Linear     Exponential 
3 0.953      0.044 0.999      0.073 0.968      0.090 Linear    Exponential 
4 0.958      0.047 0.999      0.009 0.924      0.021 Logistic       Sine 
5 0.987      0.035 0.998      0.022 0.983      0.293 Tanh       Exponential 

 
 

Table 4.  Values of RMSE, determination coefficient, and efficiency factor for each Lm model in the testing period. 

             Lm          MLP   
Neurons RMSE R² EF Neurons RMSE R² EF 

1 0.164 0.86 0.85 1 0.151 0.88 0.87 
2 0.119 0.92 0.92 2 0.167 0.87 0.83 
3 0.096 0.96 0.95 3 0.134 0.90 0.89 
4 0.073 0.97 0.97 4 0.133     0.92 0.92 
5 0.111 0.94 0.93 5 0.043 0.97 0.97 
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Fig. 2  Correlation matrix between the physical variables and sediment yield.  

 

 
 Fig. 3 Hydrographs of observed and predicted sediment yield in the selected catchments.  

 
To compare ANN model performance between the 

Lm and MLP models, the RMSE for  training, testing 
 and  validation data set were exhibited in Table 4.  The 
minimum RMSE  obtained during the training process of 
the Lm network was fairly larger than that in the MLP 
 network; however, the difference in the estimation error 
values between both networks could  be negligible. 
Comparatively, the Lm network was able to produce as 
more fitted output to  cross validation data set as in the 
MLP network. The Lm and MLP best networks for the 
testing period were drawn with the  observed  suspended 
sediment yields in the form of scatterplots and 
hydrographs (Figs 2 and 3). 

The  results of  the suitable model provided in  Fig. 2  
have shown a perfect fit where the data  fitting training 
 and testing functions of target   (observed) versus output 
(predicted) fell along  almost 45  degree line. This  should 
confirm the RMSE statistics, which were the lowest  and 
the regression of the neural network developed using 
early stopping for the sediment  yield which  was the 
highest i.e. 0.97 %, as compared to the treated networks. 
It could be seen  from the  scatterplot  where the output 
was tracking the targets every well for training, testing, 
 and  validation after more  epochs  (Fig. 2) and from the 
hydrographs that the ANN  algorithm  predictions were 
close to the observed values (Fig. 3).  Thus, according to 
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the  comparison between the obtained results, Lm and 
MLP neural networks with one hidden  layer, using 4 
and 5 neurons, tansig (hidden layer)-pureline (ouput  
layer) for Lm and tanh   (hidden layer)-exponential 
(output layer) for MLP transfer functions, were selected 
as the best  artificial neural network models for 
identification of the relationship between the suspended 
 sediment yield and the geometric, geological and 
hydroclimatological parameters of the 39  Algerian 
basins. 

The performance of artificial neural might be defied 
with the ability to estimate and  predict  artificial neural 
networks for non-linear approximation with a low 
volume of data.  ANN  model by geomorphic parameters 
designed to help the river basin behaviour. Overall,  the 
 results indicated that ANNs were a promising method 
for predicting suspended  sediment  yields. 
 
CONCLUSIONS 

In the present study, an effort was made to use the 
ANNs for prediction of sediment yield from 
geomorphic variables. The ANN model developed 
through combination of soft computing techniques (i.e. 
MATLAB and STATISTICA) and mathematical 
association of the sensitive geomorphic parameters with 
the suspended sediment yields were normalized for 
modelling the catchment responses. 

The neural network model developed for one 
catchment could be applied to other catchments, and 
also the functional relationship of geomorphic 
parameters because rainfall and runoff would differ 
from one system to another. Different basin systems had 
to be used to perform models through sediment yields 
and physical variables where statistical modelling 
techniques developed through this research might be 
replicated over other Algerian catchments to account for 
sediment load responses. 

The use of the three-layered ANN structure with the 
number of nodes in hidden layer via Levenberg-
Marquardt algorithm has improved the simulation 
results and therefore was sufficient to obtain satisfactory 
performance in suspended sediment yield prediction.  

Efforts should also be made to associate large 
datasets in Algeria with the catchment morphological 
parameters through different mathematical functions 
such as ANN-based approach, to develop 
geomorphologic association functions leading to a more 
accurate prediction of sediment losses. 
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