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Abstract: In the recent past, artificial neural networks (ANNs) have shown the ability to learn and 

capture non-linear static or dynamic behaviour among variables based on the given set 
of data. Since the knowledge of internal procedure is not necessary, the modelling can 
take place with minimum previous knowledge about the process through proper 
training of the network. In the present study, 12 ANN based models were proposed to 
predict the Biochemical Oxygen Demand (BOD5) and Chemical Oxygen Demand 
(COD) concentrations of wastewater generated from the effluent treatment plant of a 
petrochemical industry. By employing the standard back error propagation (BEP) 
algorithm, the network was trained with 103 data points for water quality indices such 
as Total Suspended Solids (TSS), Total Dissolved Solids (TDS), Phenol concentration, 
Ammoniacal Nitrogen (AMN), Total Organic Carbon (TOC) and Kjeldahl’s Nitrogen 
(KJN) to predict BOD and COD. After appropriate training, the network was tested 
with a separate test data and the best model was chosen based on the sum square error 
(training) and percentage average relative error (% ARE for testing). The results from 
this study reveal that ANNs can be accurate and efficacious in predicting unknown 
concentrations of water quality parameters through its versatile training process. 
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INTRODUCTION 

Industrial activities consume a huge amount of natural 
water, utilizable resources and energy thereby 
discharging enormous wastewater to the natural 
environment. It is therefore necessary to analyse any 
industrial wastewater to determine its reuse potential 
and the degree of treatment required prior to its ultimate 
disposal or to device suitable measures for the recovery 
of useful products. It is of great importance in water 
quality control that the amount of organic matter present 
in the system be known and that the quantity of oxygen 
required for its stabilisation be determined. Over the 
years, different physico-chemical tests have been 
developed to determine the organic and inorganic 
content of wastewater (Metcalf & Eddy, 1995). In 
general, these tests may be divided into those used to 
measure gross concentrations of organic matter greater 
than 1 mg/L and those used to measure trace 
concentrations in the range of 10-6 to 10-3 gm/L.  

Laboratory methods commonly used today to 
measure the gross amount of organic matter (greater 
than 1 mg/L) in wastewater includes the following: (a) 
Biochemical Oxygen Demand (BOD5), (b) Chemical 
Oxygen Demand (COD) and (c) Total Organic Carbon 
(TOC). These three parameters are used in wastewater 
treatment operations to estimate the influent and 
effluent characteristics and treatment efficiency. The 
use of TOC as an analytical parameter has become more 
common in recent years especially for the treatment of 
industrial wastewater. Partly, this is due to the fact that 
the TOC determinations can be carried out in triplicate 
within minutes compared with the five days required for 
the BOD5 test (Sawyer et al., 1994). Apart from these, 
the easily measurable parameter for any industrial 
wastewater includes indices like Total Suspended Solids 
(TSS), Total Dissolved Solids (TDS), Phenol 
concentration, Ammoniacal Nitrogen (AMN) and 
Kjeldahl’s Nitrogen (KJN) (Metcalf & Eddy, 1995).  

A review of the existing literature in this field 
reveals that correlation among these parameters seldom 
exists. It could be difficult to understand the dynamics 
of relationship between these parameters because they 
primarily depend on the process of the target industry, 
raw material/by-product composition, composition of 
chemicals discharged in wastewater and thus their non-
linear relationship makes universal generalization 
difficult.  

The main objective of this paper is to predict the 
BOD and COD concentrations of a refinery wastewater 
using different combinations of easily measurable water 
quality indices like TOC, TSS, TDS, Phenol, AMN and 
KJN using back error propagation (BEP) neural 
network. The best network architecture was determined 
by selecting the appropriate network topology.  
 

ARTIFICIAL NEURAL NETWORKS 

The three-layer back propagation network has been 
proved to be universal function approximations in the 
field of environmental prediction (Poggio & Girosi, 
1990). Neural networks has been applied to solve and 
predict problems related to the following; 
biodegradation kinetics of organic compounds 
(Shuurmann & Muller, 1994), estimating optimum alum 
doses in water treatment (Maier et al., 2004) and long 
term tidal waves (Lee, 2004). 
  
The ANN theory 

Neural networks are powerful data driven modelling 
tools that has the ability to capture and represent 
complex input/output relationships. The development of 
neural computational techniques emerged from the 
desire to develop an artificial system that could perform 
multiple, complex and intelligent tasks similar to those 
performed by the human brain. ANNs consists of a 
system of simple interconnected processing element 
called neurons. 
This gives the ability to model any non-linear process 
through a set of unidirectional weighted connections 
(Haykin, 1999). The neuron accepts input from single or 
multiple sources and produces output by a simple 
calculating process guarded by a non-linear transfer 
function. A three-layered network (Bandyopadhyay & 
Chattopadhyay, 2007) with an input layer, hidden layer 
and output layer is shown in Fig. 1.  

The input layer consists of a set of neurons, each 
representing an input parameter and propagates the raw 
information to the neuron in the hidden layer, which in 
turn transmits them to the neurons in the output layer. 
Each layer consists of several neurons and the layers are 
connected by the connection weights (W). The most 
commonly used transfer function is the sigmoid 
function as described by: 

 
1( )

1 e
f x x= −+

 (1) 

 
 

 
Fig. 1 Schematic of a three layer neural network. 
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This produces output in the range of 0−1 and 
introduces non-linearity into the network, which gives 
the power to capture nonlinear relationships. The back 
propagation network is the most prevalent supervised 
ANN learning model (Rummelhart et al., 1986). It uses 
the gradient descent algorithm to correct the weights 
between interconnected neurons (Maier & Dandy, 
1998). 

 During the learning process of the network, the 
algorithm computes the error between the predicted and 
specified target values at the output layer. The error 
function at the output layer can be defined by: 

 

( )21
2 d PE O O= −∑  (2) 

 
where, E is the error function, Od is the desired output 
and Op is the output predicted by the network.  
 
Important Network Parameters 

A good network architecture requires selecting the most 
dependable values of network parameters like: number 
of hidden layers, the number of neurons in the hidden 
layer NH, the activation function f(x), the learning rate of 
the network η, epoch size ε, momentum term α and 
training cycles TC. The best values for parameters: η, α, 
NH, and TC are normally estimated by a trial and error 
approach. The learning rate η and momentum α can 
play an important role in the convergence of the 
network. The η value of a network affects the size of 
steps taken in weight space (Maier & Dandy, 1998). If η 
is too small, the algorithm would take more time to 
converge. The momentum term α accelerates the 
convergence of the error during the learning process by 
adding a fraction to the precious weight update. The 
values of η and α varies between 0−1 and is normally 
estimated by trial and error (Hamed et al., 2004).  
 
MATERIALS AND METHODS 

Data handling procedure 

The various wastewater parameters such as TSS, BOD, 
COD, TOC, phenol concentration, AMN, KJN and TDS 
were obtained from the quality control laboratory of a 
refinery located in Mangalore, India. Water samples 
collected from the effluent treatment plant after tertiary 
treatment were analyzed for the above mentioned 
parameters, which were later divided into training set 
(103) and test set (40). The ranges of various values of 
different parameters used for training and testing are 
shown in Table 1. 
 
Software’s used 

Neural network based predictions were simulated using 
the software NNMODEL. Their performance was 

Table 1. Range of water quality parameters used for training and 
testing 
Sl. 
No.

Parameters 
(mg/L) 

Training  
data 

Testing 
 data 

1 BOD 2–34 13.52 6.1–34 15.61
2 COD 12–160 61.64 38–114 72.076
3 TOC 3.1–18.5 8.21 4–18.5 9.67
4 TSS 4–71 18.60 6–41 18.13
5 TDS 343–1851 858.62 480–1720 973.73
6 AMN 1.4–92 19.04 9.5–94 31.90
7 KJN 1.8–93.4 20.83 10.3–96.8 34.48
8 Phenol 0.08–0.8 0.29 0.1–0.8 0.31

 
evaluated by the Sum square error (SSE) values for 
training obtained directly from the software, while the 
test data was evaluated using percentage average 
relative error, % ARE. Low SSE and low % ARE values 
theoretically mean that the predictions are precise and 
accurate. 

The percentage Average Relative Error (% ARE) 
was estimated from this relation, 
 

Pr |1% 100Expt ed

Expt

A A
ARE

N A
−

= ×∑  (3) 

 
ANN Based Models – inputs and outputs 

A total of 12 ANN based models were evaluated in this 
study for predicting the BOD and COD of refinery 
wastewater. These models are shown in Table 2.  
 
RESULTS 

Prediction of BOD 

The training of these models were started with the 
default values of NN model with a training count of 
1000 and 4 hidden neurons in the hidden layer. From 
the next trail, the optimum training count for the 
network was decided. This was done by trial and error 
by checking the SSE and the % ARE after each cycle of 
training. The optimum training count was the one which 
gave a minimum SSE and lower % ARE for the test 
data. After deciding the maximum training count for 
these models the number of hidden neurons in the 
hidden layer were varied by small increments by 
maintaining constant training count until the desired 
SSE and % ARE for the test data was obtained. The 
training was done for these models by varying the 
learning rates of the network (0.35 to 0.75) and it was 
observed that there was no significant change in the 
SSE values after training. However, by varying the 
training count and the number of neurons in the hidden 
layer, the performance of the network greatly improved. 
The variation of SSE with different training count and 
hidden layers for model A3 is shown in Table 3. From 
these values it was observed that the SSE tends to cease 
after a particular time of training and almost remains 
constant throughout the training period. 
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Table 2. Various models developed using neural networks and their best SSE values 
Model No. Input Parameters Output Best SSE value 

A1 TOC, phenol, TSS, TDS. BOD 0.003 822 
A2 TOC, phenol, TSS, TDS. COD 0.006 053 
A3 TOC, Phenol, TSS, AMN BOD 0.003 403 
A4 TOC, Phenol, TSS, AMN COD 0.005 531 
A5 TOC, Phenol, TSS, TDS, KJN BOD and COD 0.003 585 
A6 TOC, Phenol, TSS BOD 0.003 725 
A7 TOC, Phenol,TSS COD 0.006 914 
A8 TOC, Phenol, TSS, TDS, COD and BOD 0.004 547 
A9 TOC, Phenol, TDS BOD 0.004 705 
A10 TOC, Phenol,TDS COD 0.007 055 
A11 TOC BOD 0.005 317 
A12 TOC COD 0.007 651 

    
Prediction of COD 

The training was initially carried out with the default 
values of the software NNModel. Later, the optimum 
training count for the network was determined. The 
same procedure that was applied for BOD was 
followed, thereby varying the number of hidden neurons 
in the hidden layer in small increments and by 
maintaining constant training count till the desired SSE 
and % ARE for the test data was obtained. It was 
observed that the SSE tends to slow down without 
showing any decrement in its value and then tends to 
increase to a certain extent before again decreasing and 
then remaining constant throughout the remaining 
period of training. This kind of behavior was noticed in 
model A7 at a training count of 6000 and 9 hidden 
neurons in the hidden layer which produced a SSE of 
0.008 413 which was quite high compared to the other 
training cycles. 

These models were also trained with different 
learning rates (0.5 to 0.75), but the network showed no 
positive improvement in reducing the SSE and the % 
ARE. Therefore, all these models were trained with the 
default values of NNModel for learning rates. The 
variation of SSE with the training count and hidden 
neurons in the hidden layer for the best model 
developed to predict COD is shown from Table 4. 

 
Prediction of BOD and COD in a combined model  

Two models were developed to predict BOD and COD 
simultaneously. The variation of SSE with different 
training count and different hidden layers for model A8 
is shown in Table 5. 
 
Table 3. Variation of SSE with different training count and hidden 
neurons for Model A3 

Training count Hidden neurons Sum square error 
default 
5000 
5000 
5000 
5000 
7500 

10 000 

4 
4 
5 
6 
7 
8 
8 

0.004 491 
0.003 947 
0.003 983 
0.003 942 
0.003 403 
0.003 481 
0.003 946 

The same procedure as followed earlier to determine 
the optimum training count and good SSE was followed 
for these models.  
 
DISCUSSION AND CONCLUSIONS 

The measured and predicted BOD and COD values 
from different models are shown in Figs 2–13 
respectively. After each set of training, % ARE for the 
test data was calculated. The various % ARE values 
obtained for the test data using these models are shown 
in Table 6.  
 
Table 4. Variation of SSE with different training count and hidden 
neurons for Model A10 

Training count Hidden neurons Sum square error 

default 
2000 
2500 
1000 
1500 
2500 

4 
4 
5 
6 
8 
8 

0.007 400 
0.007 324 
0.007 463 
0.007 345 
0.007 055 
0.007 155 

 
Table 5. Variation of SSE with different training count and hidden 
neurons for Model A8 

Training count Hidden neurons Sum square error 

default 
2000 
5000 
5000 
5000 
7500 

10 000 

4 
5 
6 
7 
8 
8 
8 

0.005 532 
0.004 588 
0.004 547  
0.004 891 
0.005 096 
0.004 888 
0.004 634 

 
 
Table 6. %ARE for the BOD and COD test data 

Model No 
(BOD) % ARE Model No 

(COD) % ARE 

 A1 
A3 
A6 
A9 

A11 

14.7479 
11.6614 
12.8236 
15.0126 
12.8982 

A2 
A4 
A7 

A10 
A12 

13.4163 
13.5600 
15.9200 
6.9729 

10.0821 
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Fig. 2 Measured and predicted test data for BOD concentration 
from Model A-1. 
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Fig. 3 Measured and predicted test data for COD concentration 
from Model A-2. 
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Fig. 4 Measured and predicted test data for BOD concentration 
from Model A-3. 
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Fig. 5 Measured and predicted test data for COD concentration 
from Model A-4. 
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(b) 

Fig. 6 Measured and predicted test data for (a) BOD and (b) COD concentration from Model A-5. 
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Fig. 7 Measured and predicted test data for BOD concentration from 
Model A-6. 
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Fig. 8 Measured and predicted test data for COD concentration 
from Model A-7. 
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Fig. 9 Measured and predicted test data for (a) BOD and (b) COD concentration from Model A-8. 
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Fig. 10 Measured and predicted test data for BOD concentration from 
Model A-9. 
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Fig. 11 Measured and predicted test data for COD concentration
from Model A-10.  Model A-11
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Fig. 12 Measured and predicted test data for BOD concentration from 
Model A-11. 
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Fig. 13 Measured and predicted test data for COD concentration 
from Model A-12. 
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From this table, it is evident that the Model A3 with 
TOC, Phenol, TSS and AMN as the input parameters 
was the best model for predicting BOD with a SSE of 
0.003 403 in the training data and % ARE of 11.6614 
when tested with the test data. Model A3 gave good 
results at a training count of 5000 and 7 hidden neurons 
in the hidden layer. All the other models showed 
comparatively poorer results than model A3 while both 
training and testing. While testing model A3 with the 40 
test data’s, 21 (52%) data points were found to be 
within the 10% limit. Similarly, for the different models 
developed to predict COD, it was inferred that model 
A10 with TOC, Phenol and TDS as the input parameters 
produced better results for predicting COD. This model 
was formulated with a training count of 1500 and 8 
hidden neurons in the hidden layer indicating the 
training capability of the network. This model gave a 
SSE of 0.007 055 and when tested with the test data 
yielded % ARE of 6.9729, which was remarkably good 
compared to the other models. It is noteworthy to 
mention that, out of the 40 data points used for testing 
the network, 30 (75%) data points were found to be 
within the 10% level of significance. On the other hand, 
from the results obtained for models developed to 
predict both BOD and COD simultaneously, it was 
clearly evident that model A8 with TOC, Phenol, TSS 
and TDS as the input parameters was able to predict 
good results for both BOD and COD compared to 
model A5. Model A8 produced showed better results at 
a training count of 5000 and 6 hidden neurons in the 
hidden layer. This model gave a SSE of 0.004547 for 
the training data and when tested with an external test 
data gave % ARE of 8.201 for BOD and 11.0835 for 
COD.  

This model gave commendable results when 
compared with the previous best model for BOD (A3) 
that produced a SSE of 0.003 403 and % ARE of 
11.6614, however for COD it was able to produce 
satisfactory results compared to the best model for COD 
(A10). During BOD predictions, 57% (23/40) of the 
error residuals were found to be below 10% of the 
measured value, while for COD it was 67% (27/40). 

The results of models obtained from NN Model 
collectively show good statistical significance at the 
10% level for the test data. Model A3, was able to 
predict BOD using TOC, Phenol, TSS, AMN as the 
model inputs, while Model A10 at a training count of

5000 and 7 hidden neurons in the hidden layer, while 
Model A10 gave good results for COD using TOC, 
Phenol and TDS as the inputs at a training count of 
1500 and 8 hidden neurons. Interestingly, the combined 
model A8 developed to predict both BOD and COD was 
found more effective using TOC, Phenol, TSS and TDS 
as the inputs. The results from this neural prediction 
showed very less % ARE values, indicating that the 
predictions are highly acceptable. Similar data driven 
modelling approaches can be developed to suit any 
industrial situation to predict fluctuating effluent 
concentrations well in advance. 
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