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Abstract: The automatic feature extraction from digital aerial images is not a trivial task mainly 

due to occlusion problems, shadows and different viewpoints. To obtain an improved 
feature extraction we used laser data, which have additional information such as height 
and material type of the surface. In this paper we performed the combination of digital 
image and laser data in order to improve the results of automatic extraction of urban 
roads. Initially, the urban roads were detected from the response of laser information; in 
the sequence we applied two different approaches to connect the disconnected road 
segments. The results were very promising, with sensitivity rate of 92%. 
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1 INTRODUCTION 

Feature extraction is a very pursued problem that has 
received considerable attention in the last decade. The 
extraction of rural road network is a topic widely 
researched, however, the extraction of road network in 
dense urban areas is a very hard task and there are few 
works related to theme (Baumgartner et al., 1999). The 
factors that make difficult this process are the 
heterogeneity of the objects in the image, and the 
relationship between roads and buildings, trees, cars, 
etc. This complexity is also inherent in the extraction 
process of other urban features, such as the contours of 
roofs, house identification and etc. This context shows 
that the extraction of urban objects can lead to obstacles 
very hard to overcome (Galvanin & Dal Poz, 2009). 

The extraction of cartographic features can be 
divided into two steps, they are (i) recognition, and (ii) 
delineation. Both tasks are performed by automated or 
semi-automated methods. Although semi-automatic 
methods depend on the assistance of an operator, they 
perform all the delineation task of tracing features, 
which is usually time consuming and onerous (Dal Poz 
et al., 2006; Mena, 2003). 

High resolution images provide detailed spatial 
information of the earth’s surface such that urban the 
features are represented by pixels and used in many 
extraction methods. However, this information can be 
insufficient for the classification of urban land coverage. 
Existing occlusions can cause loss of spectral 
information in some images (Araki, 2005). The 
classification by points considering only the height is 
also not enough to identify objects such as buildings, 
due to noise and small differences in height of between 
neighbor sampling points (Centeno & Mitishita, 2007). 
These problems can be overcome combining the laser 
data (which contains altimetry information about the 
surface) and digital images (containing color 
information), thus improving the discrimination of 
coverage. An important point is that for the merging 
data from different sources (such as cartographic bases, 
altimetry data and images) are necessary the spatial 
references be the same (Araki, 2005). 

In this paper we presented a novel algorithm that 
combines the digital image and laser data for automatic 
extraction of urban roads; that facilitate the extraction of 
urban roads that is often manually executed by 
cartographers. Therefore, the main contribution of this 
paper is to propose an automated approach for 
extraction of urban roads. Additionally, the proposed 
methodology can be employed in others applications of 
feature extraction. 

The remaining of this paper is organized as follow. 
In Section 2 the laser scanning process is detailed. The 
process of generation of the regular grid of points is 
presented in Section 3. In Section 4 focuses about roads 
extraction, with and without the use of laser data. The 
proposed algorithm used to generate a Digital Terrain 

Model is introduced in Section 5. In Section 6 the 
procedures used in each stage of urban roads extraction 
are detailed. The detailed analyses of the results are 
performed in Section 7. Lastly, in Section 8 is presented 
our conclusions and proposals for future work. 
 
2 LASER SCANNING PROCESS 

Currently, the seeks technologies that enable greater 
speed and accuracy in delivering results is very pursued. 
One of these technologies that have been commonly 
used in photogrammetry is the data from the laser 
scanning system, which can be of two types: (i) static or 
(ii) dynamic. The static surface mapping scanning is 
performed from a fixed point; differently, the dynamic 
surface mapping scanning is done from a mobile 
platform (Wutke, 2006). 

The laser scanning system named Lidar (Light 
Detection and Ranging) or Ladar (Laser Detection 
Ranging) is a technology designed for measuring three-
dimensional coordinates of a point on a surface. This 
system is based on the emission of a laser pulse 
(Centeno & Mitishita, 2007). 

The basic operation of the laser scanning system 
consists of sending a laser pulse toward a target surface, 
capturing the reflection on the hit surface. The process 
of laser scanning is classified into two class, they are: (i) 
triangulation and (ii) “time-of-light” (Centeno & 
Mitishita, 2007). 

Systems that operate on the triangulation principle 
use a laser transmitter and a camera to capture the laser 
data. According to the distance between the hit surface 
and the sensor, the reflection of laser pulse appears at 
different points on the camera image plane. A triangle is 
formed by the issuer, the camera and the point on the hit 
surface (Centeno & Mitishita, 2007). Based on this 
triangulation is possible to calculate the distance 
between the scanning system and the hit surface. In 
Fig. 1 is illustrated a configuration of two laser pulses 
of different positions on the image plane camera. 

 

 
 

Fig. 1 Triangulation performed by laser system for different 
distances of two different points. 
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Systems that operate on the ime-of-light principle are 
based on the time past from the emission of the laser 
pulse and its return (reflection). Equation (1) shows the 
distance computation formula: 
 

                             2/.dtcR                            (1) 
 

where R is the distance between the hit surface and the 
laser scanning system, c is the propagation speed of a 
laser beam and dt is the time past from the emission and 
reception of the laser pulse.   

A set of 3D points on a surface that is generated by a 
laser scanning is called Digital Elevation Model (DEM). 
During the scanning process, the points of different 
surfaces can be collected, as: buildings, trees, cars, etc. 
(Centeno & Mitishita, 2007). It is interesting noting that 
Digital Elevation Models (DEM) and Digital Terrain 
Models (DTM) are different models. Both models are 
formed by a set of points over a surface, however in 
DEM the points denote all the elevation of the surface 
(including buildings, trees, cars, etc.); differently, in 
DTM the points represent only the ground 
characteristics, such as soil, water etc. (Fazan & Dal 
Poz, 2013). The DTMs are widely applied in the 
generation of orthophotos and topographic maps, as 
well in the study of soil characteristics. 
 
3 GRID GENERATION 

The set of points provided by the laser scanning system 
is named cloud of points, which contains a set of three-
dimensional coordinates irregularly distributed. As our 
approach uses digital image processing techniques, then 
it became necessary to define a regular grid G in cloud 
to the points. 

Initially, we defined a dimension size n of the regular 
grid over the set of points that determines the spacing in 
the X and Y axes. Then, all coordinates xi and yi have 
associated a zi coordinate and the intensity value I 
(intensity of laser pulse response) that are obtained by 
the average of the values in the cell, as shown in Eqs (2) 
and (3). 
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In order to determine the grid dimension, we 
computed the average X and Y distance between each 
pair of adjacent points. Both set were sorted and had 
distinct values. Equations (4) and (5) show the process 
of computation.                 
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Lastly, we defined dx and dy values that denotes the X 
and Y dimension of the grid. Equations (6) and (7) 
show the formulation to determine the final dimensions 
of the grid. 
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where xmax and xmin represents the maximum and the 
minimum of the coordinates xi; analogously, ymax and 
ymin denotes the maximum and the minimum of the 
coordinates yi.  
 
4 RELATED RESEARCHES 

The literature presents various techniques, 
methodologies and algorithms related to the road 
extraction in orbital and flight images, with and without 
the use of laser data. Some of these methods are 
presented below. 

For example, Silva (2003) presented a method for 
detection and automatic rebuilding of road joins in 
digital images of rural areas. This method requires the 
road segments be previously extracted through a semi-
automatic method. The method is based on two steps: 

(1) Potential areas of highway junctions are detected 
through the criteria of proximity and radiometric 
homogeneity. The proximity criterion detects clusters of 
points belonging to the highway segments that are 
distant from each other at maximum distance. The 
criterion of radiometric homogeneity checks if the 
region bounded by points detected by the first criterion 
is radiometrically consistent with the road bed. The 
points of groups that satisfy this criterion are accepted 
as belonging to the highway junctions. 

(2) Four highway junction models are used to 
represent the typical forms of joint occurrence in images 
of rural scenes. These models allow the reconstruction 
of joints found in the previous step. The road junction 
reconstruction process consists in calculating the most 
representative point of the geometrical center of the 
junction region and establishing connections between 
this point and the junction region of the points detected 
in the previous method step. 

Mendes et al. (2004) present a method for the design 
of local roads in digital images, performing a 
combination of a linear extrapolation technique, and a 
highway delineator based on correlation techniques. A 
highway axis point, previously extracted, is linearly 
extrapolated, resulting in an approximate position. 

This position is refined by the highway delineator 
based on the correlation among grayscale profiles, 
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extracted transversely to the highway axis. This strategy 
is repeated until the delineation of the entire axis of the 
road. 

Alves (2007) evaluated the semi-automatic 
extraction of roads on the extract of a hybrid image, 
aiming to apply this in the cartography. The results 
obtained by the algorithm based on dynamic 
programming (‘ERGeo’) were compared with the 
results of photo-interpretation and a field survey (taken 
as reference). For this, it was used a rural area of a 
cartographic base 1: 50 000 from the City of Silva 
Jardim, RJ Brazil. The scenes (images) obtained by 
CBERS and SPOT satellites were combined through the 
merger by principal components and the processing of 
images were performed to increase the contrast and 
highlight the road features. 

Other related works merge different types of 
information. Araki (2005) presents a method to merge 
altimetry and spectral information data and auxiliary 
data in the high resolution image classification. The 
spectral information is presented in high-resolution 
images, although represent the earth’s surface in detail, 
the information are insufficient for urban land cover 
classification. This is due to loss of information by 
occlusion. This problem can be solved by using 
altimetry data acquired by airborne system, improving 
discrimination. Another possibility is the use of 
auxiliary information present in cartographic bases in 
order to assist the discrimination of classes. An 
important point for merging data from these different 
sources is the need of a common spatial reference. The 
method for classification has to handle data 
corresponding to scales of numerical and nominal 
measurements, and does not depend on the assignment 
of a particular statistical distribution for classes. 
Decision trees, OPF and SVM (Pereira & Nakamura, 
2015) are an alternative for the supervised classification, 
however this methods demands a ground-truth for the 
training step. 

There are researches that use laser data for the 
extraction of roads. Castro et al. (2009) presents a 
methodology for road extraction from laser intensity 
images using mathematical morphology. The roads are 
features on maps, which can be highlighted for its 
dynamism due the modifications in its shape or texture, 
type - paved or unpaved - and/or inclusion of new roads 
or stretches on the road system. The first step is to 
generate a DTM from the height data. Then the roads 
are classified according to the expected range for the 
intensity of the laser pulse and for the height difference 
in a neighbourhood. 

Hu et al. (2004) combine laser data and aerial 
images. The recognition of roads from aerial images can 
be supplemented by using the laser data to detect shaded 
areas not captured by the image, facilitating the 
extraction. 

 
5 GENERATING DIGITAL TERRAIN MODEL 

A resource used in one of the stages of this study is the 
Digital Terrain Model (DTM). DTM is a 3D mapping of 
the land, excluding all objects on its surface such as 
house, buildings, cars, and more. The DTM cannot be 
generated directly from the laser scanning system. Thus, 
it was generated by filtering the Digital Elevation Model 
(DEM). 

The chosen filter is the proposed by Vosselman 
(2000), in this filter is defined a function ∆hmax(d) where 
the maximum height grows proportionally to the 
distance d. The idea of the filter is to exclude all points 
that not belong to the terrain. It is performed at a 
specific direction, based on the inclination of the terrain, 
as shown in Figs 2 and 3. 

The first step of this filter is to detect the first points 
outside the ground. It is necessary to know the region of 
interest that is determined by the adjacent points to the 
initial points. The two procedures that classify a point as 
belonging or not to the terrain are shown in Algorithm 
1 and Algorithm 2. Algorithm 1 receives as parameter 
a set A of adjacent points, an initial point p, and a 
maximum height defined by hmax = ∆hmax(d). In the 
algorithm is verified whether exists a point among the 
elements of A that has a height difference bigger than 
hmax. In Algorithm 2 it is done the opposite process. 

 
Algorithm 1 Detection of points that do not belong to the set. 
 

 
 
 
Algorithm 2 Detection of points that belong to the set. 
 

 
 

If the declivity of the region analyzed is 
insignificant, it is possible that the point of continuity 
that should be detected by Algorithm 2, never is found 
or it is found too far; causing errors. For this reason, the 
algorithm has a propagation limit that in case no 
continuity point is found in the distance limit, no point 
is removed from that region.  

DetectPointBelonging ( A , p, hmax ) 
       i  0 
  while i < size[A] do 
    h  p.h – A[i].h 
    if h <= hmax then 
      return TRUE 
    i  i + 1 
  return FALSE     

DetectPointNotBelonging ( A , p, hmax )
  i  0 
  while i < size[A] do 
    h  p.h – A[i].h 
    if h > hmax then 
      return TRUE 
    i  i + 1 

return FALSE  
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Fig. 2 Example of filtering; (i) possible inclination line of the terrain based on a starting point on the terrain; (p) limit propagation line of the 
inclination rule, starting from the beginning of the inclination line; (A) objects on the terrain, as houses, cars, etc.; (B) Natural relief area, as 
valleys and mountains for example; (h) height difference between two points. 
 
Algorithm 3 Filtering of points that do not belong to the terrain. 
 

 
 

 
Fig. 3 Example of a filtered area after points from region A were removed; (i) possible inclination line of the terrain, based on a starting point 
on the terrain; (p) limit propagation line of the inclination rule, starting from the beginning of the inclination line; (A) objects on the terrain, 
as houses, cars, etc.; (B) Natural relief area, as valleys and mountains for example. 

Filtering ( G, hmax, prop )   
  create G’ 
  width[G’]  width[G] 
  height[G’]  height[G] 
  for i  0 until width[G] do 
    for j  0 until height[G] ‐ 1 do 
      A’  { G[i][j + 1] } 
      if DetectPointNotBelonging (A’, G[i][j], hmax) do 
        j  j + 1 
        A’  { G[i][j+1] } 
        c  0 
        j’  j ‐ 1 
        while j < height[G] ‐ 1 and c < prop and 

DetectPointNotBelonging (A’, G[i][j], hmax) do 
j  j + 1 
A’  { G[i][j+1] } 

        j  j – 1 
        if c = prop then 
          j  j’ 
      else 
        G’[i][j]  G[i][j]   
 
      j  j + 1 
    i  i + 1 
  return G’ 
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Fig. 4 Process flowchart of the urban roads extraction. 
 

This way, if the propagation exceeds the propagation 
limit, the searching process defined in Algorithm 1 is 
continued from the following state. In Algorithm 3 is 
shown the algorithm of the filtering process in the 
vertical direction. After the filtering process, the points 
that do not belong to the terrain are excluded. In Fig. 2 
and Fig. 3 are illustrated the filtering method, where 
points from A (objects) are eliminated and points from 
B (natural relief) are preserved. 
 
6 ALGORITHM FOR URBAN ROADS 
EXTRACTION 

In this section we presented a new algorithm based on 
computer vision techniques for the extraction of urban 
roads using as input the laser data and digital aerial 
images.  
 
6.1 Steps 

The proposed algorithm can be seen as a schematic 
diagram that is represented by the flowchart of Fig. 4. 
 

6.1.1 Matching Between Laser Data and Digital 
Image 

Differences in scale, density and angulation, results in 
the lack of a direct match between a point in the DEM 
matrix and the same point on the digital image, due the 
fact that no prior treatment was performed in the laser 
data or images for this purpose. In this work we use 
color, altitude and surface material information to carry 
out matching between these data. 

Matching between high resolution images and laser 
data was performed by manually selecting common 
points between the digital image and greyscale image 
generated from laser data, as illustrated in Fig. 5. After 
defining the set of points, we calculated a 
transformation matrix that represents the mapping  

               
(a)                                                (b) 

 

Fig. 5 Selection of common points between the image generated 
from the laser data (a) and the high resolution image (b) to perform 
matching. 
 
between laser data and aerial image. This matrix is 
formed by the accumulation of two geometric 
transformation matrices: scale and rotating. The scale 
matrix Sxy is calculated by the distance between the 
selected points, while the rotation matrix R(θ) is 
calculated by the angle θ between vectors formed by 
points. The matrix composition is shown in Equations 
(8) and (9). The next step is the association of each 
point of the high resolution image with its respective 
point in the DEM and vice versa. 
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Due to differences in resolution between the two data 
sources it was necessary to perform an adjustment in the 
mapping of the digital image to the DEM. Thus, it is 
assured that every pixel in the digital image is mapped 
to the corresponding point in the laser data, except 
where there is no corresponding point. 

 

Input data 
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6.1.2 Laser Data Filtration 

The laser data contains two types of information, they 
are: (i) the altimetry that represents the surface height; 
and (ii) the response intensity, which represents the 
surface material. In this work, we use both information 
to extract roads. First, we generated a binarized image 
from the response intensity data, where the darker 
points correspond to low response intensity and the 
brighter points correspond to higher response intensity, 
as shown in Fig. 6. 

The asphalt is a specific type of material that has 
very low response intensity, as shown in Table 1. Then 
we removed all points whose response intensity is 
higher than this threshold. The result of this step is 
shown in Fig. 7.  

It is possible to see that most of the road remained in 
the binarized image; however, there are many of noise. 
In order to reduce noise we applied two simple filters 
that remove surfaces higher than terrain and eliminate 
regions that are considered small. The filters are 
exemplified in the following subsections. 
 

 
 

Fig. 6 Image generated from response intensity of laser data. 
 
 
 
 

Table 1. Percentage of response intensity for some type of 
materials (Galvanin & Dal Poz, 2009) 

Material Reflection (%) 
Clear, dry and clean wood 94 
Snow 80–90 
Bright stones 85 
Clay, limestone until 75 
Miscellaneous  vegetation 60 
Conifers 30 
Asphalt 17 

 

 
 

Fig. 7 Binarized response intensity image. 
 
6.1.3 Removal of objects higher than terrain 

We consider that roads are soil regions covered by 
asphalt. Thus, urban roads cannot be higher than terrain 
level. Then, regions higher than terrain level were 
removed; it was performed using the DTM and DEM. 
All points in the DEM with a higher value for the Z 
coordinate is considered to be above the terrain and 
must be removed.  

This step was useful to remove objects with low 
response intensity material, but higher than terrain level.  
The result is of this filtering process is shown in Fig. 8. 
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Fig. 8 Result of removal of points higher than terrain level. 
 
6.1.4 Noise Removal 

We removed noise from the images using the two 
mathematical morphology operations: (i) erosion and 
(ii) dilation. This process removes small noises and 
highlights important parts, as shown in Fig. 9. 
 
6.1.5 Removal of Small Objects 

Commonly, images have a large size on least one 
dimension, i.e., even though they are narrow, they have 
an elongated shape. This characteristic facilitated the 
removal of small objects. In order to perform this step 
we used the Flood Fill algorithm in two steps. In the 
first step is defined the size of the objects. The size was 
calculated from the distance between P1 (Xmin, Ymin) and 
P2 (Xmax, Ymax). The calculation of the Euclidian distance 
is shown in Eq. (10). The distance between P1 and P2 
correspond the length of the diagonal of the bounding 
box of the object, as shown in Fig. 10. The result of this 
filtering process is shown in Fig. 11.  
 

   22 )()( minmaxminmax YYXXD           (10) 

 

 
 

Fig. 9 Image after being eroded and dilated. 
 

 

 
 

Fig. 10 Bounding box and diagonal length of an object. 
 

6.1.6 Skeletonization  

From the result of the filtering and binarization applied 
to the laser data we generated a skeleton. The 
skeletonization algorithm used was the one proposed by 
Zhang & Suen (1984). The algorithm considers only 
pixels that have 8 neighbors, i.e., bordering pixels are 
not considered. For each pixel P1 to be analyzed, we 
compute A(P1) and B(P1). A(P1) is the number of 
transitions from white to black running through the 
neighbors of P1 in the following sequence P2, P3, P4, 
P5, P6, P7, P8, P9, P2. The neighbors are determined as 
shown in Fig. 12. B(P1) is the number of black 
neighbors of P1. The algorithm consists of two parts: 
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Fig. 11 Small objects are removed according the size. 

 

P9 P2 P3 

P8 P1 P4 

P7 P6 P5 

 

Fig. 12 Neighbors of P1 determined for skeletonization. 
 
 

In the first step all pixels are tested to verify which 
satisfy all the following conditions: 

 It is black and has 8 neighbors 
 2 <= B(P1) <= 6 
 A(P1) = 1 
 At least one among P2, P4 and P6 is white. 
 At least one among P4, P6 and P8 is white. 

The pixels that satisfy simultaneously all the 
conditions are defined as white. 
In the second step, all pixels are tested to verify if 
satisfy all the follow conditions: 

 It is black and has 8 neighbors. 
 2 <= B(P1) <= 6 
 A(P1) = 1 

 At least one among P2, P4 and P8 is white. 
 At least one among P2, P6 and P8 is white. 

 
The pixels that satisfy simultaneously all previous 

conditions are define as white. The steps 1 and 2 are 
repeated until no point is modified in any of the two 
steps. The result of the skeletonization is shown in 
Fig. 13.  

From the skeleton we extracted keypoints as 
extremities and fork. A point in the skeleton is 
considered an extremity if the pixel that represents it 
belongs to the skeleton and has exactly one neighbor 
that also belongs to the skeleton, as exemplified in 
Fig. 14.  

 

 
Fig. 13 The output image of  skeletonization process. 

 

 
Fig. 14 Detected extremities are colored in red. 
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One point is considered a fork if from the point, the 

line is separated in two or more lines, or if the point 
represents the intersection of two or more lines, as 
exemplified Fig. 15. 

To verify if a pixel represents a bifurcation, we have 
to compute the number of neighbor pixels that belong to 
the skeleton. The pixel is considered a bifurcation if it 
has more than two neighbors that belong to the skeleton.  

For counting the neighbors, we first consider the 
neighbors of the Four-neighbor rule, i.e., the upper 
neighbor, the lower neighbor, the left neighbor and the 
right neighbor, represented by P1, P2, P3 and P4, 
respectively (Fig. 16). The neighbors of the diagonals 
P12, P23, P34 and P41 are only considered if the 
adjacent Four-neighbor pixels do not belong to the 
skeleton. For example, the point P12 is verified only if 
the points P1 and P2 do not belong to the skeleton. 
Similarly, the point P23 is verified only if the points P2 
and P3 do not belong to the skeleton. The same process 
is performed for P23 and P41. 

The counting is executed this way to avoid that some 
specific points are misclassified as a bifurcation; given 
the fact that some points have more than two neighbors 
and they are not bifurcations. In Fig. 17 we have a pixel 
(represented by the red square) that despite having 4 
neighbors (represented by the blue squares) and it is not 
a bifurcation.  

 

 
 

Fig. 15 Example of a detected bifurcation. 
 

  

P41 P1 P12 

P4 P P2 

P34 P3 P23 
 

Fig. 16 Neighbors of the pixel P1. 
 

 

 
 

Fig. 17 Example of degenerate neighborhood. 

 
6.1.7 Segments 

From the points of bifurcation and extremities, the 
skeleton is divided into segments. Each segment 
corresponds to a sequence of continuous pixels from a 
bifurcation or an extremity to the next bifurcation or 
extremity, as shown in Fig. 18. Those segments are used 
to reconstruct the roads 
 
6.1.8 Segments linking 

These segments represent possible roads. In some cases, 
part of a road is not detected and the segments can 
contain discontinuities. However, a road should be 
represented by a continuous segment of pixels defined 
by two or more smaller segments. To overcome this 
problem, we connect segments with discontinuities, as 
shown in Fig. 19. 

The segments connections are realized in two steps. 
The first step consists in rules based in angulation and 
distance. The threshold for angulation and distance were 
defined empirically. The distance is determined by the 
Euclidian distance, shown in Eq. (9), between the 
extremities of each segment. This distance should be 
smaller than the threshold determined by the rule. To 
compute the angle we defined three vectors, one for 
each segment and one for the new segment that will be 
generated. For example, in Fig. 20 we have vectors 
V1=(a1,a2) representing the segment A, V2=(b1, b2) 
representing the segment B and V3=(a2,b1) 
representing the possible link between the segments A 
and B. The angle between V1 and V2 and the angle 
between V1 and V3 are computed. These angles have to 
be smaller than the threshold established by the rule. 
The angle α between two vectors u and v is computed 
by Eq. (11).  

 
Fig. 18 Part of a skeleton divided in 6 segments defined by 
bifurcations and extremities. 
 

 
                    (a)                  (b)                  (c)  
 

Fig. 19 (a) Binarized image generated from laser data, (b) 
skeletonized image with disconnected segments and (c) skeletonized 
image after linking the segments. 
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Fig. 20 Example of segments connection. 
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In the second step the thresholds for angulation and 

distance are larger; however is added one more rule, the 
region between the two points that will be connected 
should be green. We consider as green the points that 
satisfy the conditions (R/G) < 1.12 and (B/G) < 1.05 and 
(R+G+B) < 310, where R, G and B are the red, green 
and blue components of the RGB system. The condition 
used above showed to be very effective as shown in 
Fig. 21.  

The color information are stored in the digital image, 
thus, for this step we need to use the correspondence 
matrix generated in matching process. Using the 
correspondence matrix we can find the points P1 and P2 
that represent to the points in the laser data that will be 
connected (extremities of the segments). 

After finding the points P1 and P2 in the digital 
image, we join the pixels between them using the

algorithm of Bresenham (1965). The algorithm of 
Bresenham determines the pixels that belong to the 
straight line that links two pixels, as shown in Fig. 22. 

Every pixel that belongs to this line has its color 
verified. The points P1 and P2 are connected when at 
least 65% of the pixels in the line are green. In Fig. 23 
is shown an example of segments connected in this step.   
 
6.1.9 Removal of Small Segments 

Some segments are very small. They were generated by 
noise and do not represent roads. Thus, they need be 
removed. For this purpose, we compute the size of the 
segments by the number of pixels that form it. The 
threshold size for the removal of segments was 
determined empirically. Some removed segments are 
shown in Fig. 24. 

 

 
                       (a)                                     (b) 
 

Fig. 21 (a) Original digital image and (b) image with green areas 
highlighted. 
 

 
Fig. 22 Points that belong to the straight line that connects P1 and P2 
determined by the Bresenham algorithm. 
 

 

 
                                           (a)                                                         (b)                                                   (c) 
 

Fig. 23 Example of segments connection performed by the analysis of wooden area. (a) Digital image, (b) points to be connected and (c) the 
result of the connection process. 
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                      (a)                                            (b) 
 

Fig. 24 Example of removal of small segments. (a) Image with small 
segments to be removed. (b) Resulting image. 
 

 
                           (a)                                       (b) 
 

Fig. 25 Example of segment smoothing. (a) Original image. (b) 
Image with smoothed segments. 
 
6.1.10 Segments Smoothing 

The algorithm proposed by Douglas & Peucker (1973) 
was applied to smooth the obtained lines. The algorithm 
eliminates points that cause small segments. However, 
points that represent bigger segments are kept then that 
most significant curves are preserved.   
 
7 RESULTS 

Three sets of laser data and digital images were used of 
an urban area of the city of Curitiba, state of Parana in 
Brazil. Each testing set represents a region with 
overlapping between laser data and the image of a urban 
area.  

In order to analyze the results we manually 
elaborated templates (Figs 26b, 28b and 30b), based on 
the laser data e digital images of the three data sets. 
These templates were used to validate the results 
obtained after applying the algorithm.  

At the end of all processing is generated an image 
with all detected roads. To validate the results we 
subtract the resulting image from the template. Then, we 
were able to count the points that correspond to true 
positives (urban roads) and false positives (regions 
wrongly detected). The counting of points 
corresponding to false negatives (not detected roads) 
was done by demarcating these points in the resulting 
image. 

Figures 27, 29 and 31 show points that were 
correctly detected (in black) and points misclassified 

(false positive in red and false negative in green) for the 
first data set. The same process was also applied to the 
second and third data set.  

The numbers of black, red and green pixels were 
counted for each experiment. The results are shown in 
Table 2. We also computed the Sensibility S, which 
measures the capacity to correctly detect urban roads 
among those that actually exist, and the Positive 
Predictive Value PPV, which represents the proportion 
of urban roads correctly detected, as shown in Eqs (12) 
and (13), respectively: 

 
)/( FNTPTPS                           (12) 

)/( FPTPTPPPV                        (13) 
 

where TP is the number of True Positive, FN is the 
number of False Negatives and FP is the number of 
False Positives.  

The results presented show that the algorithm 
proposed achieved a good sensibility rate, as it correctly 
detected most of the existing roads in the three 
experiments. Nevertheless, in the three experiments the 
Positive Predictive Value show a small rate due to the 
fact that the algorithm detects besides the asphalt, 
parking lots and driveways as roads (false positives).  
 
Table 2. Results counting 

  Exp. 1 Exp. 2 Exp. 3 
True Positives 10 966 12 249 15 174 
False Positives 2671 5980 4440 
False Negatives 611 1011 1103 
Sensibility 94.7% 92.4% 93.2% 
Positive Predictive Value 80.4% 67.2% 77.4% 

 

 
 

                             (a)                                           (b) 
 
Fig. 26. (a) Laser data and superimposed template. (b) Manually 
generated template (first data set).  
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Fig. 27 Image containing mistakes and successes of the algorithm 
for the first data set (the image, whose lines had width of 1 pixel, 
was dilated for better viewing).  
 
 

 
                     (a)                                               (b) 
 

Fig. 28 (a) Laser data and superimposed template. (b) Manually 
generated template (second data set). 

 
Fig. 29 Image containing mistakes and successes of the algorithm 
for the second data set (the image, whose lines had width of 1 pixel, 
was dilated for better viewing).  
 
 

 
                                (a)                                      (b) 
 

Fig. 30 (a) Laser data and superimposed template. (b) Manually 
generated template (third data set). 
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Fig. 31 Image containing mistakes and successes of the algorithm 
for the third data set (the image, whose lines had width of 1 pixel, 
was dilated for better viewing). 
 
8 CONCLUSION 

The use of intensity of laser pulse response, height and 
color, were useful for the task of extracting urban roads. 
Each type of information provided a unique 
contribution; the merging of them enhanced the final 
result. Based on the experiments, we noticed that the 
number of false positives was bigger than the number of 
false negatives, and in most cases, it happened due to 
parking areas and driveways. On the other hand, the 
false negatives occurred, in general, due to road 
occlusion by trees. However, it is interesting noting that 
in the regions where a small part of the road was 
covered by trees, the algorithm was able to detect it. 

A main difficult we faced was the use of image with 
perspective deformities, due to viewing angles of the 
cameras. This problem affected significantly the areas 
closer to the boundaries of the image; the matching 
presented considerably displacements in this region. 
The use of orthophotos would eliminate this problem; 
but this type of image was not available for this region. 

The results obtained were very satisfactory, mainly 
due to difficulty and the challenge of this application. 
The proposed method obtained precision of above the 
92%. We expect refine the detection of urban roads 
using a larger amount of laser data and images from the 
same area.  
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