
Journal of Urban and Environmental 
Engineering, v.2, n.1 (2008) 14–20 

Journal of Urban and 
Environmental Engineering 

UEEJ  
ISSN 1982-3932 

doi: 10.4090/juee.2008.v2n1.014020 
www.journal-uee.org

 
 
A COMPARATIVE STUDY ON CALIBRATION METHODS OF 

NASH’S RAINFALL-RUNOFF MODEL TO AMMAMEH 
WATERSHED, IRAN 

 
Vahid Nourani∗  

Faculty of Civil Engineering, University of Tabriz, Iran 

 
Received 7 December 2007; received in revised form 26 April 2008; accepted 8 June 2008 

 

 
Abstract: Increasing importance of watershed management during last decades highlighted the 

need for sufficient data and accurate estimation of rainfall and runoff within 
watersheds. Therefore, various conceptual models have been developed with 
parameters based on observed data. Since further investigations depend on these 
parameters, it is important to accurately estimate them. This study by utilizing various 
methods, tries to estimate Nash rainfall-runoff model parameters and then evaluate the 
reliability of parameter estimation methods; moment, least square error, maximum 
likelihood, maximum entropy and genetic algorithm. Results based on a case study on 
the data from Ammameh watershed in Central Iran, indicate that the genetic algorithm 
method, which has been developed based on artificial intelligence, more accurately 
estimates Nash’s model parameters.  
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INTRODUCTION 

During last years, many efforts have been done to 
accurately estimate runoff within watersheds. Since 
1930 various linear and nonlinear hydrologic models 
have been developed to simulate and forecast 
hydrologic processes and variables. Utilizing new 
methods and increasing knowledge about hydrologic 
processes helped these models to improve through the 
years. Though, because of the complexity in the rainfall-
runoff process, mostly conceptual models have been 
used in simulations and analysis of this process 
(Nourani & Mano, 2007). Furthermore, linear reservoir 
model presented by Zoch, as the eldest and simplest and 
most applicable model in simulating rainfall-runoff and 
stream flow routing, is the base of most other 
conceptual models (Chow et al., 1988). Indeed the 
linear reservoir model of Nash is the first conceptual 
model (Nash, 1957), in the base of linear reservoir 
concept, which utilized mathematical theory in 
developing instantaneous unit hydrograph (IUH) within 
a basin (Nourani et al., 2007). This model has been 
addressed by many researchers such as Diskin et al. 
(1978), Ponce (1980), Croley (1980), Singh (1988) and 
Szilagyi (2003). 

According to significant importance of accurately 
estimating the parameters of conceptual models such as 
Nash’s model, various methods have been developed. 

Some of the conventional parameter estimation 
methods are: moment method, least square error 
method, Maximum likelihood method, Maximum 
entropy method and linear and nonlinear programming 
method (see Singh, 1988). 

Furthermore, recently artificial intelligent methods 
have been utilized to improve these conceptual models. 
During last years, many problems which didn't have a 
clear solution have been solved using artificial 
intelligence methods (Chau, 2007). Too many 
parameters affecting a physical process and completely 
nonlinear relations between these parameters could 
increase complications of assessing and analyzing this 
process. These intelligent methods, using potential 
knowledge therein available data, develop general 
relations between these data and adopt these relations 
within other conditions. Genetic algorithm is one of 
these intelligent methods (Goldberg, 1989) which is 
increasingly utilized in various optimization problems 
(especially since 1990 in the field of water resources 
engineering). In the parameter calibration process, the 
genetic algorithm can be considered as a robust 
approach to solving problems that are not yet fully 
characterized or too complex to allow full 
characterization, but for which some analytical 
evaluation is available (Santos et al., 2003).  

In hydrology, Wang (1991) used genetic algorithm to 
calibrate the Tank model. Then, Cieniawski et al. 
(1995) utilized genetic algorithm to optimize a ground 
water model. Franchini (1996) combined genetic 

algorithm with a successive nonlinear programming 
method, to calibrate a conceptual model for rainfall-
runoff. Aly & Peralta (1999) combined genetic 
algorithm with neural networks to optimize use of 
aquifers. Cheng et al. (2002) used genetic algorithm - 
fuzzy logic hybrid model in order to calibrate a multi-
objective rainfall-runoff model. Jain & Srinivasulu 
(2004) used non-binary genetic algorithm with neural 
networks to improve rainfall-runoff modeling and 
presented a new class for these models. Also Jain et al. 
(2005) used this non-binary genetic algorithm to 
determine an optimal unit pulse response for rainfall-
runoff model. 

Considering the variety of calibration methods of 
rainfall-runoff models, evaluation and comparison of 
these methods can be an instructive study for the 
hydrologist in real world applications. This paper tries 
to calculate parameters of Nash’s conceptual rainfall-
runoff model which is the most popular rainfall-runoff 
model, utilizing some conventional methods as well as 
genetic algorithm by using sufficient statistical data of a 
real case study. Then, the accuracies of the methods 
have been evaluated and compared. 

The rest of the paper has been organized as follows. 
Next section presents a brief description about Nash’s 
model. The used calibration methods are introduced in 
the other section. Study area and results are presented in 
two separated sections, respectively and conclusions 
will be the last section of the paper. 
 

NASH’S MODEL 

 Nash (1957) developed his instantaneous hydrograph 
model through this assumption that the watershed is 
formed of a successive linear reservoirs cascade with 
rainfall input at the first reservoir. Applying this 
assumption within linear reservoir model, gamma 
distribution function based on n (number of reservoirs) 
and k (reservoir storage coefficient) will be as follow 
(Singh, 1988): 

( )
( )

11 n t kt e
h t

n k k

− −

=
Γ
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⎜ ⎟
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(1) 

 
where Γ is gamma function, t is time and h indicates 
instantaneous unit hydrograph model of Nash. 
Parameters of n and k can be obtained through various 
estimation methods. 

Peak time, tP, can be computed through derivation of 
Eq. (1) related to t and letting dh/dt=0:  

tp=k(n-1)  (2) 

Total time lag, tL, is: 

tL=nk (3) 

The lag time (lag of a watershed) is defined as time 
interval between area center of excess rainfall hyetograph 
and area center of direct hydrograph (Singh, 1988). 
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Sometimes it is taken as the time interval between onset 
of excess rainfall and center of surface through direct 
runoff. Therefore lag time of a reservoir k can be 
obtained using Eq. (3) when the number of the 
reservoirs n and the watershed total lag tL are known. 
 

PARAMETER ESTIMATION METHODS  

Moment method 

While t is a continuous variable and f(t) is its function, 
rth momentum, Mr, of f(t) about origin is defined as 
follows (Singh, 1988): 

(4) 
0

( ) ( )r
rM t f t dt

+∞
= ∫  

 
and parameters of Nash model are computed through 
moment theorem as follows (Singh, 1988): 

(5)( ) ( )1 1M Q M I nk− =  
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I and Q are input and output hydrographs as functions of t. 
 
Least square method 
Assume a function as y=f(x,a1,a2,…,am), in which 
parameters of ai (i=1,2,3,…,m) are to be determined. 
The least square method, evaluate the parameters by 
minimizing least square differences between observed 
and computed y; this summation can be expressed by: 
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where 0y (i) is the ith observed y, yc(i) is ith computed y 
and n > m is the number of observations. By derivation 
of S related to each parameter and letting it equal to zero 
Eq. (7) will be minimized as follows: 
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Then through these m equations, which are called as 

normal equations, m parameters of ai can be obtained. 
 

Maximum likelihood method 

Assume probability density function (PDF) of x as 
y=f(x,a1,a2, …,am), in which parameters of ai 
(i=1,2,3,…,m) had to be determined. x1,x2,…,xn are 
random samples of this density, combined probability 
density function would be as y=f(x1,x2,x3, a1,a2,…,am). 
The samples are random with independent assumption, 
so combined probability density function can be 
expressed as the PDFs multiply: 

(9) Laaaxfaaaxxxf
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Parameters can be determined by maximizing L. 
Therefore by derivation of L related to each parameter 
and letting it equal to zero, m equations will attain as 
follows: 
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Solving these m equations, m unknown parameters 
can be determined. 

Nash’s model parameters through maximum 
likelihood method can be computed as follows (Rezai 
Pajand & Bozorgnia, 1995):  

1ln ln ln ⎛ ⎞= − ⎜ ⎟
⎝ ⎠

A n
k

 (11) 

ln ( ) ln lnn n A G−Ψ = −  (12)  

where A is arithmetic mean, G is geometric mean and Ψ 
is psi function. 
 
Maximum entropy method 

Entropy is a criterion to explain indeterminacy of 
variable x in f(x) and can be defined as follows (Singh, 
1988): 
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k > 0 is an arbitrary constant or a scale coefficient, that 
depends on type of measurement. 

Nash’s model parameters through entropy method 
can be computed as follows (Singh, 1988): 

 
(14) nk=E[t] 
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(15) ln( ) ( ) ln( [ ]) [ln ]n n E t E t−Ψ = −  

where E[t] is expected function. 
 
Genetic algorithms 

This method has been developed based on nature and 
the role of inheritance on evolution of it and tries to 
optimize mathematical systems. Generally, genetic 
algorithm can be explained as follows. First, a 
population of chromosomes is selected through possible 
solutions and then target function value is calculated for 
each member of this population. In the next phase, new 
population is produced through existing population by a 
certain probability distribution function or another 
random operator and then target function value is 
calculated for each members of this new population. 
Comparing this new population (offspring) and parent 
population, new members can be selected for the next 
population. Though, selection procedures vary between 
different genetic algorithms.  
 
STUDY AREA 
Ammameh watershed with area of 37.2 km² and 
elevations from 1990 up to 3868 m, is one of the sub-
basins of Jajrood watershed, upstream Latian dam that 
located in south of central Alborz, Tehran and here is 
considered as the case study watershed. Ammameh 
river, as the drain of this watershed, directed from north 
east to south west and at Kamarkhani reaches Jajrood 
river and has a length about 13 km. About 200 hectares 
of the vegetation coverage include gardens and grass, 
and the remainder has vegetation coverage of bushes.  

The geology formation of the watershed is hard 
volcanic and surface layer is constructed 15 cm 
approximately thick, dark brown in color with a varying 
texture of sandy to silt and clay. The topography is steep 
with average slope 11%. Hence the soils are susceptible 
to erosion to some extended. The prevailing climate of 
the study area is snowy and sub-humid having four well 
defined seasons viz. spring, summer, autumn and 
winter. During the wet season, the area is under the 
influence of middle-latitude westerlies, and most of the 
rain that occurs over the region during this period is 
caused by depressions moving over the area, after 
forming in the Mediterranean Sea on a branch of the 
polar jet stream in the upper troposphere. The mean 
daily temperatures vary from -22°C in January up to 

 

 
Fig. 1 Ammameh watershed map. 

 
40

o
C in July with a yearly average of 9

o
C. The dominant 

winds over the area blow from the northeast and the 
southwest. 

Some storm events within this basin have been 
recorded at time intervals of 30 minutes. Figure 1 
shows the watershed position and map. 
 
RESULTS AND DISCUSSION 

In order to determine parameters, data from 8 
rainfall-runoff storm events, which have been 
recorded at station of Kamarkhani (located at output 
of Ammameh watershed), are used. Rainfall-runoff 
data of events have been recorded at time intervals of 
30 minutes until the end of each event. Table 1 
presents information about these events. For the 
reassessment, the events of 1 to 6 are used for 
calibration and events 7 and 8 for verification of the 
accuracy of the methods. Columns of Table 1 
presents number of events, date of events, rainfall 
height, equivalent direct runoff height, rainfall rate 
and rainfall to runoff ratio, respectively.  

Observed unit hydrograph of each event is 
determined as follows. First, using the constant slope 
method base flow of each event is calculated and then 
the observed direct hydrograph is determined. Then 
using unity principle and constant penetration method, 
the penetration value of each event is calculated and is 
subtracted from the observed hyetograph to determine 
effective hyetograph for each event. Finally, using the 
de-convolution method, observed unit hydrograph for 
each event can be determined (Chow et al., 1988). 

 

Table 1. Rainfall-runoff data 
No. Event Date hrunoff (mm) hrainfall (mm) hrainfall / hrunoff Ψ(mm/h) 

1 8/10/1993 0.2 8.05 0.025 6.4 
2 7/13/1996 1.85 10.50 0.176 1.2 
3 7/04/1997 0.14 4.20 0.033 0.02 
4 7/04/1992 2.63 6.35 0.415 1.51 
5 04/17/1997 2.82 6.25 0.451 5.17 
6 9/05/1992 0.2 11.5 0.017 8.3 
7 03/27/1992 0.28 4.65 0.06 0.07 
8 7/18/2004 2.74 4.95 0.553 1.11 
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In order to evaluate and compare the models 
performances, Nash-Sutcliffe criterion (E) (Nash & 
Sutcliffe, 1970), Eq. (16), correlation coefficient 
between the observed and computed data (R), Eq. (17), 
and absolute error ratio of peak flow (RAEP (%)), Eq. 
(18), have been utilized in this paper, where Qi,obs is the 
observed discharge at time t = i; Qi,sim is simulated 
discharge at time i, QP denotes the peak flow and N is 
the number of observations.  
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Parameters of Nash model are estimated for each 
event through various methods and finally the mean 
value of parameters for each method are listed in Table 
2 for calibration and verification stages. For each event, 
the computed IUH against the observed IUH are 
illustrated in Figs 2 and 3.  

Results given in Table 2 indicate that genetic 
algorithm and the least square error methods with 
highest values of correlation coefficient and Nash-
Sutcliffe, lead the most accurate estimations. 
Furthermore, the minimum values of absolute error ratio 
of peak flow for these two methods indicate that peak 
value of calculated direct runoff very slightly varies 
with peak value of the observed direct runoff. As this 
difference decreases and even reaches to zero, more 
accurate regressions and consequently more accurate 
estimations of parameters can be obtained. Maximum 
entropy method and mostly maximum likelihood 
method because of their excessive approximations in 
numerical solutions attain unreliable estimations.  

 
Table 2. Nash’s model parameters and efficiencies (Calibration and Verification) 

E R RAEp (%) Method n* k*(h) 
Cal. Ver Cal. Ver Cal. Ver 

Moment 2.698 1.276 0.807 0.718 0.909 0.88 22.19 21.6 
Least Square Error 3.103 1.156 0.876 0.777 0.949 0.904 13.79 21.51 
Maximum Likelihood 1.913 2.502 0.646 0.522 0.847 0.844 38.73 47.06 
Maximum Entropy 1.802 2.752 0.38 0.48 0.678 0.834 22.54 49.27 
Genetic Algorithm 3.103 1.151 0.88 0.778 0.95 0.906 13.64 21.11 
*The mean value of calibration step for 5 storms data 
 

   

   
Fig. 2 Observed and calculated unit hydrographs of calibration step. 
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Fig. 3 Observed and calculated unit hydrographs of verification 

step. 
 
Lower values of correlation coefficient and Nash-

Sutcliffe criteria and higher value of absolute error ratio 
of peak flow for these two methods indicate 
unreliability of their estimations.  

The mathematical framework of the maximum 
likelihood and maximum entropy is the same for the 
parameter estimation of the Nash’s model and the 
results of the parameters estimation for these methods 
are approximately identical as can be seen in Table 2 (a 
few differences are related to the used numerical 
solutions errors) but when the estimated parameters are 
used for the runoff simulation, this low discrepancy may 
lead to different performances as can be seen in the 
obtained E and/or RAEp for these two methods. Anyway 
it can be recommended to use just one of them in the 
real applications. 

Although both least square and genetic algorithm 
methods have good efficiency, GA has some advantages 
over the other method such that it does not use function 
gradient and therefore, the discontinuities of the answer 
domain can be handled without trapping in the local 
minimum. 

CONCLUSIONS 

Given results through this investigation have led to the 
following conclusions: 

Approximations and numerical solutions could lead 
to unreliable estimations. Among the methods presented 
in this study, genetic algorithm gives most accurate 
estimations of Nash hydrologic model parameters for 
the case study of Ammameh.  

The most unreliable estimations were attributed to 
the maximum entropy method. Among the classic 
methods the most accurate estimations are obtained by 
the least square method. 
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