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Abstract: The rainfall characteristics within Klang River basin is analyzed by the continuous 

wavelet transform using monthly rainfall data (1997–2009) from a raingauge and also 
using daily rainfall data (1998–2013) from the Tropical Rainfall Measuring Mission 
(TRMM). The wavelet power spectrum showed that some frequency components were 
presented within the rainfall time series, but the observed time series is short to provide 
accurate information, thus the daily TRMM rainfall data were used. In such analysis, 
two main frequency components, i.e., 6 and 12 months, showed to be present during the 
entire period of 16 years. Such semiannual and annual frequencies were confirmed by 
the global wavelet power spectra. Finally, the modulation in the 8–16-month and 256–
512-day bands were examined by an average of all scales between 8 and 16 months, 
and 256 and 512 days, respectively, giving a measure of the average monthly/daily 
variance versus time, where the periods with low or high variance could be identified. 
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INTRODUCTION 

Rainfall is an important climate factor, which has 
significant impacts on agricultural production and 
national economic development (Kuang et al., 2000). 
The Klang River basin covers a larger area, and then a 
good understanding of the seasonal and annual rainfall 
characteristics and variation trends in the basin is 
essential. 

The wavelet transform theoretical development was 
in 1984 by Grossman & Morlet (1984), and since then it 
has attracted much attention and it is well used in signal 
processing as an alternative to the Fourier Transform 
(FT) in preserving local, non-periodic, multiscaled 
phenomena. Its advantage over classical spectral 
analysis is because it allows analyzing different scales 
of temporal variability and it does not need a stationary 
series. Therefore, it is appropriate to analyze unregular 
distributed events and time series that contain 
nonstationary power at many different frequencies, 
which turns it suitable for analyzing localized variations 
of power within a time series. Several applied fields are 
using wavelets, e.g., acoustics, astronomy, signal 
processing and geophysics (Farge, 1992; Torrence & 
Compo, 1998; Graps, 1995; Smith et al., 1998; Santos 
& Ideião, 2006; Braga & Santos, 2010; Santos & Freire, 
2012; Santos et al., 2013; Santos & Morais, 2013; 
Akrami et al., 2014; Nourani et al., 2014; Santos et al., 
2001, 2003, 2013, 2014a, 2014b). 
   The following sections describe the wavelet 
transform, the rainfall data of Klang River basin, and 
then the application of wavelet to such data using the 
program developed by Torrence & Compo (1998). 
 
WAVELET TRANSFORM 

Mathematical transformations are intended to obtain 
further information from a signal that is not readily 
available in its raw format. There are several 
transformations that can be applied, among which the 
Fourier transforms are probably the most popular. In 
order to maintain time and frequency localization in a 
signal analysis, one possibility would be to do a 
Windowed Fourier Transform (WFT), using a certain 
window size and sliding it along in time, computing the 
Fast Fourier Transform (FFT) at each time using only 
the data within the window. This could solve the 
frequency localization problem, but would still be 
dependent on the window size used. Another point to be 
observed is that the WFT relies on the assumption that 
the signal can be decomposed into sinusoidal 
components. 
   Thus, to measure the stationarity of a time series is 
necessary to calculate the running variance using a 
fixed-width window. Despite the disadvantage of using 
a fixed-width window, the analysis could be repeated 

with a variety of window widths. By smoothly varying 
the window width, a picture of the changes in variance 
versus both time and window width could be built. The 
problem with this technique is the simple “boxcar” 
shape of the window function that introduces edge 
effects such as ringing. Using such a black-box-car, 
there will be no information on what is going on within 
the box, but only recover the average energy (Torrence 
& Compo, 1998).  
   These problems are solved with wavelet analysis 
attempts by decomposing or transforming a one-
dimensional time series into a diffuse two-dimensional 
time-frequency image, simultaneously. It means that it 
is possible to get information on both the amplitude of 
any “periodic” signals within the series, and how this 
amplitude varies with time. 
   An example of a basic wave, of finite duration and 
with a specific frequency, is shown in Fig. 1 (the Morlet 
wavelet). Such a shape could be used as a window 
function for the analysis of variance. This wavelet has 
the advantage of incorporating a wave of a certain 
period, as well as being finite in extent.  
   For example, if we could assume that the total width 
of this wavelet is about 10 years, it would be possible to 
find the correlation between this curve and the first 10 
years of our time series. This single number would give 
a measure of the projection of this wave on the data 
during these first 10 years, i.e. how much [amplitude] 
does the 10-year period resemble a wave of this width 
[frequency]. By sliding this wavelet along the time 
series, a new time series of the projection amplitude 
versus time can be constructed. As for the “scale” of the 
wavelet, it can be varied by changing its width. This is 
the advantage of wavelet analysis over a moving Fourier 
spectrum. For a window of a certain width, the sliding 
FFT is fitting different numbers of waves; i.e., there can 
be many high-frequency waves within a window, while 
the same window can only contain a few low-frequency 
waves. The wavelet analysis always uses a wavelet of 
the exact same shape, only the size scales up or down 
with the size of the window. In practice, the Morlet 
wavelet shown in Fig. 1 is defined as the product of a 
complex exponential wave and a Gaussian envelope: 

 
Fig. 1 Morlet wavelet base with frequency 0 = 6.0, in which the

real part is in solid line and imaginary part is in dashed line. 
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where 0() is the wavelet value at nondimensional 
time , and 0 is the nondimensional frequency, equal 
to 6 in this study. This is the basic wavelet function, but 
it will be now needed some way to change the overall 
size as well as slide the entire wavelet along in time. 
Thus, the “scaled wavelets” are defined as: 
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where s is the “dilation” parameter used to change the 
scale, and n is the translation parameter used to slide in 
time. The factor of s–1/2 is a normalization to keep the 
total energy of the scaled wavelet constant.  
   We are given a time series X, with values of xn, at 
time index n. Each value is separated in time by a 
constant time interval t. The wavelet transform Wn(s) 
is just the inner product (or convolution) of the wavelet 
function with the original time series: 
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where the asterisk (*) denotes complex conjugate.  
   The above integral can be evaluated for various values 
of the scale s (multiples of the lowest possible 
frequency), as well as all values of n between the start 
and end dates. A two-dimensional picture of the 
variability is constructed by plotting the wavelet 
amplitude and phase. Then, a time series can be 
decomposed into time-frequency phase space using a 
mother wavelet. The actual computation of the wavelet 
transform can be done by the following algorithm 
(Torrence & Compo, 1998): (a) choose a mother 
wavelet; (b) find the FT of the mother wavelet; (c) find 
the FT of the time series; (d) choose a minimum scale 
s0, and all other scales; (e) for each scale, do: 
• Using Eq. (4), or whatever is appropriate for the 
mother wavelet in use, compute the daughter wavelet at 
that scale: 
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where the ^ indicates the FT. 
• Normalize the daughter wavelet by dividing by the 
square-root of the total wavelet variance (the total of 2 
should then be one, thus preserving the variance of the 
time series);  
• Multiply by the FT of your time series;  
• Using Eq. (5), inverse transform back to real space;  

   





1

0

ˆˆ
N

k

tni
kkn

kesxsW                 (5) 

where k is the angular frequency, equal to 2k/Nt for 
k  N/2 or equal to –2k/Nt for k > N/2. It is possible to 
compute the wavelet transform in the time domain using 

Eq. (3). However, it is much simpler to use the fact that 
the wavelet transform is the convolution between the 
two functions x and , and to carry out the wavelet 
transform in Fourier space using the FFT; and (f) make 
a contour plot.  
 
RAINFALL DATA 

The Klang River basin is located to the west coast of 
Malaysian Peninsular and engulfs the federal territory of 
Kuala Lumpur and some parts of the state of Selangor 
(Fig. 2). The study area is the most densely populated 
area in the country with an estimated population of over 
3.7 million (about 18% of the national population). The 
basin has an annual population growth rate of 
approximately 5% and land use is dominated by urban 
residential development (44%), forest reserves (34%), 
agriculture (15%) and commercial/industry zones (7%). 
Urbanization and industrialization in the river basin 
have been rapidly replacing major portions of 
agricultural and ex-mining land. As a result of the 
extensive and rapid urban development in the basin 
area, problems have emerged in the form of over bank 
floods and flash floods due to clogged drainage systems 
and changes of the river physical environment. This has 
prompted the commissioning of a number of flood 
mitigation and river environment enhancement 
programs as the problems and the associated social and 
economic costs have been escalating with more 
urbanization (Earth Observation Centre UKM Malaysia, 
2013). 
   The Klang River, with 120 km length, originates from 
the Main Range (at an altitude of about 1330 m) and 
about 25 km to the north of Kuala Lumpur. This river 
finally pours into the sea at the Strait of Melaka. This 
river also flows through a region with a dense 

Fig. 2 The Klang River and the Klang Gate Dam basins, Malaysia. 
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population. Eleven tributaries comprise the water of 
Klang River. Some of these tributaries are Ampang, 
Bunus, Damansara, Gombak, and Batu. Klang River’s 
upper basin is a fairly mountainous with a steep slope. 
The Klang valley’s latitude is 3°14′ N and its longitude 
is 101°45′ E (EOC, 2013). 
   Klang River basin is the most developed region in 
Malaysia, especially, in the city of Kuala Lumpur. 
However, runoffs have become a serious problem in this 
region during the past decade. The floods occurred in 
early 21st century showed that the infrastructure, 
especially the channels, which were constructed in this 
region were not enough to cater for the flood flows. 
This situation is more complicated in the areas where 
the flood has to pass where exists a bridge, i.e. Tun 
Perak bridge blocks the flow of flood. Heavy rainfall 
and runoffs have also caused serious problems in areas 
such as Sungai Ampang and the upper Sungai Klang. 
The most critical regions are Sungai Batu and Sungai 
Gombak which are located on the north-west of the 
catchment. The region known as Masjid Jamek is the 

confluence of Sungai Klang and Sungai Gombak. It has 
been estimated that the occurrence of heavy rainfall like 
those in early 21st century, which caused damages in 
areas like Jalan Tun Perak, Jalan Kuching, High Court 
Complex, City Hall Car Park, Masjid Jamek, would be 
catastrophic (EOC, 2013). The map in Fig. 2 provides 
more information on Klang River, Klang Dam 
Catchment, Klang Gate Dam, etc.  
   The rainfall data set of Klang River was based on 
Klang Gates Dam data from the year 1997 to 2008 (Fig. 
3a), which present a mean, maximum, minimum and 
standard deviation values equal to 232.45 mm (rmean), 
662.80 mm (rmax), 9.60 mm (rmin) and 116.54 mm (rstd), 
respectively. 
 
RESULTS AND DISCUSSION 

Wavelet analysis was chosen, besides the other reasons 
and advantages described earlier, because applications 
such as standard Fourier Transform analysis to a time 
series should be only attempted when the time series 

 
Fig. 3 (a) The Klang River basin monthly rainfall hyeotograpgh. (b) The wavelet power spectrum using Morlet mother-wavelet. The 

contour levels are chosen so that 75%, 50%, 25%, and 5% of the wavelet power is above each level, respectively. Region below 
the yellow line is the cone of influence, where zero padding has reduced the variance. White contour is the 5% significance level, 
using a white-noise background spectrum. (c) The global wavelet power spectrum (blue line). The dashed line is the 5% 
significance level for the global wavelet spectrum. (d) Scale-average wavelet power over the 8–16-month band for the monthly 
rainfall. The dashed line is the 95% confidence level assuming white-noise. 
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fulfils two important characteristics: (1) stationarity; 
i.e., that no changes in the mean, variance, etc., occur 
throughout the time series; and (2) that the time series 
can be described as the summation of different periodic 
components (described by simple harmonic functions) 
for the whole period. The time series described here do 
not fulfil both requirements. In fact, earth sciences time 
series are usually nonstationary and present trends of the 
mean value, changes in the variability for certain 
periods (Silva et al., 2015a). Furthermore, precipitation 
time series may present unregular distributed events 
with nonstationary power over many different 
frequencies. Thus, their intrinsic temporal structure is 
not well represented by the superposition of a few 
frequency components as derived in a usual Fourier 
analysis. The periodic oscillation of rainfall variation 
and the points of abrupt change at different time scales 

along the time series are discovered. The results indicate 
that there are obvious periodic oscillations of 812 
years and 46 years for the seasonal and annual rainfalls 
variation. 
 
Wavelet power spectrum 

For the monthly distributed data, the parameters for the 
wavelet analysis are set as t = 1 month and s0 = 2 
months because s = 2t; j = 0.25 to do 4 sub-octaves 
per octave; and j1 = 6/j in order to do 6 powers-of-two 
with j sub-octaves each; and for the daily distributed 
data, the parameters are set as t = 1 day and s0 = 2 days 
because s = 2t; j = 0.25 to do 4 sub-octaves per 
octave; and j1 = 10/j in order to do 10 powers-of-two 
with j sub-octaves each. 

 
Fig. 4 (a) The Klang River basin daily TRMM rainfall hyetograph. (b) The wavelet power spectrum using Morlet mother-wavelet. The 

contour levels are chosen so that 75%, 50%, 25%, and 5% of the wavelet power is above each level, respectively. Region below 
the yellow line is the cone of influence, where zero padding has reduced the variance. White contour is the 5% significance level, 
using a white-noise background spectrum. (c) The global wavelet power spectrum (blue line). The dashed line is the 5% 
significance level for the global wavelet spectrum. (d) Scale-average wavelet power over the 256–512-day band for the daily 
rainfall. The dashed line is the 95% confidence level assuming white-noise. 
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   Figure 3b shows the power (absolute value squared) 
of the wavelet transform for the monthly rainfall in 
Klang River basin presented in Fig. 3a, which is a 
record of the period between 1997 and 2008. The 
spectrum in Fig. 3b gives information on the relative 
power at a certain scale and a certain time and it shows 
the actual oscillations of the individual wavelets, rather 
than just their magnitude. It is possible to note that there 
is more concentration of power between the 4–16-
month band, but unfortunately it is not clear when each 
frequency occurs. Thus, we make use of TRMM rainfall 
data in order to explain better such oscillations (Figs 
45). Figure 4a shows the TRMM daily rainfall record 
of the period of 1998−2013 (rmean = 231.32 mm, rmax = 
435.72 mm, rmin = 7.65 mm, rstd = 82.51 mm) and the 
power of the wavelet transform is shown in Fig. 4b, in 
which it is clear to note the two frequencies, one 
between the 128–256-day band and another between the 
256–512-day band, are present almost during the whole 
time series. Those frequencies correspond respectively 
to semiannual and annual signals, which are confirmed 
by the global wavelet spectrum in Fig. 4c. Such signals 
are not clear in Fig. 3c., probably due to the data quality 
rather than true signal information. The variance of 
power in 8–16-month band (Fig. 3d) shows the dry and 
wet years in an annual basis; i.e., when the power 
decreases substantially in this band, it means a dry year 
and when the power is maximum means a wet year. 
Only one wet period can be identified in 2001, but 
Fig. 4d shows with more precision wet periods in 1999–
2001 and in 2011–2013 within the 256–512-day band.  
   The region below the yellow line in those figures 
(Figs 3b and 4b) is the cone of influence, where zero 
padding has reduced the variance. Because we are 
dealing with finite-length time series, errors will occur 
at the beginning and end of the wavelet power spectrum. 
Torrence & Compo (1998) explain that one solution is 
to pad the end of the time series with zeroes before 
applying the wavelet transform and then remove them 
afterward. Here the time series is padded with sufficient 
zeroes to bring the total length N up to the next-higher 
power of two, thus limiting the edge effects and 
speeding up the Fourier Transform. Padding with zeroes 
introduces discontinuities at the endpoints and decreases 
the amplitude near the edges as going to larger scales, 
since more zeroes enter the analysis. The cone of 
influence is the region of the wavelet spectrum in which 
edge effects become important and is defined as the e-
folding time for the autocorrelation of wavelet power at 
each scale. The peaks within these regions have 
presumably been reduced in magnitude due to the zero 
padding. Thus, it is unclear whether the decrease in any 
band power in this cross-hatched region is a true 
decrease in variance or an artifact of the padding. Note 
also that for cyclic series, there is no need to pad with 

zeroes, and there is no cone of influence (Santos et al., 
2013). 

The white contour in the same figure is the 5% 
significance level, using a white-noise background 
spectrum. Many geophysical time series can be modeled 
as either white-noise or red-noise. A simple model for 
red-noise is the univariate lag-1 autoregressive process. 
The lag-1 is the correlation between the time series and 
itself, but shifted (or lagged) by one time unit. In this 
present case, this would be a shift of one day (Fig. 4) or 
one month (Figs 3 and 5). The lag-1 measures the 
persistence of an anomaly from one day/month to the 
next. The true lag-1  can be computed by an 
approximation using  = (1 + 2

1/2)/2, where 1 is the 
lag-1 autocorrelation and 2 is the lag-2 autocorrelation, 
which is the same as lag-1 but just shifted by two points 
instead of one. The time series studied show 1 less than 
0.4, then according to Santos et al. (2013) it is better to 
test them to white-noise (1 = 0.0). 

The null hypothesis is defined for the wavelet power 
spectrum as assuming that the time series has a mean 
power spectrum; if a peak in the wavelet power 
spectrum is significantly above this background 
spectrum, then it can be assumed to be a true feature 
with a certain percent confidence. For definitions, 
“significant at the 5% level” is equivalent to “the 95% 
confidence level,” and implies a test against a certain 
background level, while the “95% confidence interval” 
refers to the range of confidence about a given value. 
The 95% confidence implies that 5% of the wavelet 
power should be above this level. 
 
Global wavelet power spectrum 

The semiannual and annual frequencies (periodicity at 6 
and 12 months) of these time series are confirmed by an 
integration of power over time (Figs 3c, 4c and 5c), 
which show two significant peaks above the 95% 
confidence level for the global wavelet spectrum, 
assuming white-noise, represented by the dashed lines. 
However, Fig. 4c also presents significant peaks (at the 
5% level) centered in the 8–64-day band, which 
correspond to pulses of highly significant power within 
such a band (one week up to two months). These global 
wavelet spectra provide an unbiased and consistent 
estimation of the true power spectrum of the time series, 
and thus they are a simple and robust way to 
characterize the time series variability. 
 
Scale-average time series 

The scale-average wavelet power is a time series of the 
average variance in a certain band, in this case 8–16-
month band (Fig. 3d) and 256–512-day band (Fig. 4d), 
used to examine modulation of one frequency by 
another within the same time series. These figures are 
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made respectively by the average of Figs 3b and 4b 
over all scales between 8 and 16 months, and between 
256 and 512 days, respectively, which gives a measure 
of the average year variance versus time. The variance 
plot shows distinct periods when the rainfall variance 
was low or high as described before.  

Figure 3d shows just one wet period around 2012, 
but Figs 4d and 5d clarify that the wet periods can be 
found from 1999 up to the end of 2001, and another 
starting in 2011.   
 
CONCLUSION 

In order to study the variability of the rainfall time 
series in Klang River basin, TRMM data are used and 
the wavelet analysis is applied. The wavelet power 
spectrum using monthly data from a rainfall gauge 
within the basin shows some power concentration and 

the TRMM daily data reveals the location of such power 
concentration, of which two main frequency 
components can be found, i.e. semiannual and annual 
periodicities of such event, which is confirmed by the 
peak of the integration of transform magnitude vectors 
over time. The periods with low variance in such bands 
can be identified by the average of the all scales within 
the selected bands. The annual frequency disappears in 
2010, and the semiannual frequency is low until 2001 
and in 2003. The monthly wavelet transform analysis 
using the TRMM also confirms such results (Fig. 5). 
The TRMM shows to be accurate when compared to the 
rainfall data from a conventional gauge and very 
convenient for hydrological studies as cluster analysis 
(Brito Neto et al., 2015), time series trends (Santos et 
al., 2015; Silva et al., 2015a; 2015b) and erosion (Farias 
& Santos, 2014; Santos et al., 2014d; 2015) since it is a 
continuous daily rainfall time series since 1998. 

 
Fig. 5 (a) The Klang River basin monthly TRMM rainfall hyetograph. (b) The wavelet power spectrum using Morlet mother-wavelet. 

The contour levels are chosen so that 75%, 50%, 25%, and 5% of the wavelet power is above each level, respectively. Region 
below the yellow line is the cone of influence, where zero padding has reduced the variance. White contour is the 5% significance 
level, using a white-noise background spectrum. (c) The global wavelet power spectrum (blue line). The dashed line is the 5% 
significance level for the global wavelet spectrum. (d) Scale-average wavelet power over the 8–16-month band for the monthly 
rainfall. The dashed line is the 95% confidence level assuming white-noise. 
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