
A Fault-Based Testing Approach for VR Applications

Stevão A. Andrade1, Fátima L. S. Nunes2, Márcio E. Delamaro1

1Instituto de Ciências Matemáticas e de Computação, 2Escola de Artes, Ciências e Humanidades
Universidade de São Paulo, Brazil

stevao@icmc.usp.br, fatima.nunes@usp.br, delamaro@icmc.usp.br

Abstract: Technologies such as Virtual Reality (VR) have emerged, allowing the development of three-dimensional environments
with real-time interaction. VR systems lack similarities between traditional programs, which makes it ineffective to apply traditional
software testing criteria in then. Considering this motivation and the acceptance between researchers and engineers that quality is an
essential factor in software development, in this paper we examine software testing practices available for the VR domain and present
the possibilities for improvement to provide an automated software testing approach that can contribute to the quality assurance of
VR applications.

Keywords: software testing, fault-based testing, metamorphic testing, validation, virtual reality.

1. Introduction
Virtual Reality (VR) uses computers to create 3D
environments, enabling navigation and real-time
interaction. The user can navigate through the
environment to explore possible features present in a 3D
representation, such as training simulations.

The visual aspects are often the most related to the
creation of VR environments because the vision is the
main form of perception for the acquisition of
information for most of the users. However, VR is not
limited to what we can see. Other vital components of
human perception play an essential role in shaping a
virtual environment, such as sounds, and perceptions
gained through touch [1].

Despite the huge benefits of adopting VR to develop
applications in various areas, this poses new challenges
for software quality assurance activities [2]. For
example, VR developed software presents
unconventional software structures, such as scene
graphs, which may represent new sources of faults.
These new challenges motivated the development of
some approaches that aim to contribute to the quality
assurance process of software in the context of VR.

Previous software testing approaches specific to VR
applications fail because of a lack of generalization and
the difficulty of systematizing how a testing procedure
can be measured. This problem is described in the
literature as the “oracle problem,” and occurs in cases in
which traditional approaches of measuring the execution
of a test case are impractical or are not useful to judge
the correctness of outputs generated from the input
domain data [3, 4].

As previously discussed, it is hard to infer a test
oracle for VR applications, needing, in general, the
figure of a human as an oracle. This problem directly
compromises the feasibility of applying automated
testing techniques [4]. One possible solution to this
problem is the use of metamorphic testing.
Metamorphic testing aims to verify whether a given
program behaves according to a set of metamorphic
relations. A metamorphic relationship specifies how a
particular change in a program´s input data can modify
its behavior and hence its output. Therefore, it is
possible to infer the correction of the program even
though there is no explicit presence of a test oracle [5].

Since, in general, fault-based test approaches, which
are the focus of this work, heavily rely on the figure of a
test oracle, the hypothesis raised here is that:

Hypothesis – It is possible to propose a software
testing approach based on fault-based techniques,
applicable to the VR domain, by combining the
mutation testing criterion with the metamorphic testing
technique.

We considered that this hypothesis is feasible as
various studies discuss the application of the fault-based
test in several contexts [6], as well as studies that
successfully present the use of metamorphic testing in
multiple domains [5].

We assume that if both approaches are combined, we
can propose a systematized approach to be applied to
the VR domain to conduct the software testing activity,
as well as to ensure a quality criterion that measures its
application.

The idea is to leverage the benefits of a fault-based
test approach that is well-recognized for its fault reveal
ability and to use concepts extracted from metamorphic
testing as a way to mitigate the oracle problem [3],
which is one of the main challenges for the application
of an automated testing approach in VR applications.

Therefore, the main goals of this work are:

Objective 1 – To define a fault taxonomy specific for
the VR domain;
Objective 2 – To define metamorphic relationships that
comply with the fault taxonomy;
Objective 3 – To define mutation operators that comply
with the fault taxonomy;
Objective 4 – To propose a fault-based testing approach
for VR domain.

In summary, the idea is to generate mutants that
model possible faults in VR applications and use
metamorphic relationships to “kill” such mutants in
order to prove that the modeled faults are not present in
the original program. The goal of using mutants together
with metamorphic testing is because metamorphic
testing is considered a black box testing approach,
which does not give much information regarding the
spot location of the revealed fault; otherwise, VR

Comunicações em Informátca v3, nv2, dez/2019
DOI: 10v22478/ufpbv2595-0622v2019 3n2v49451 1

applications heavily depend on visual aspects.
Therefore, mutants can guide the tester more objectively
to identify the point of the program that contains the
revealed fault.

2. Methodology
According to the research gap characterized in the
previous section, this project aims to study and propose
mechanisms to enable the application of a fault-based
testing approach to the context of VR applications.

Focusing on answering the presented research
question, the subsections below present the main
activities to be performed during the development of the
work.

2.1 Definition of a VR Fault Taxonomy
According to the collection of norms defined by IEEE, a
taxonomy is a scheme that divides a set of knowledge
and defines relationships between the parts of that set. It
is used to classify and understand the body of
knowledge about a particular topic.

The focus of this activity is to investigate the
proneness of specific types of faults during the
development of VR applications, considering specific
VR properties, harmful implementation mechanisms,
and recurrent fault scenarios. Based on these
observations, it is expected to define a defect taxonomy
that should be able to categorize the variety of faults
that can occur in VR software.

2.2 Definition of metamorphic relations aligned
with the fault taxonomy
The effectiveness of metamorphic tests is highly related
to the metamorphic relationships that are used in the
process. Therefore, building effective metamorphic
relationships is a critical step in the successful
application of metamorphic testing. Thus, it is advisable
to use a variety of metamorphic relationships to ensure
that software has been evaluated adequately.

Defining good metamorphic relationships requires
knowledge of the problem domain. Therefore,
understanding typical defects, as well as frequent
failures that occur in the development of VR
applications, are fundamental steps for the success of
this work step, which instantiates such information
through constraints that an application must respect
during its execution.

2.3 A fault-based testing approach to VR
applications
Fault-based approaches have been proved in
experimental evaluations as a robust test selection
criterion [7, 8]. We intend to propose a fault-based
approach for VR software. To do so, the VR fault
taxonomy should guide the development of mutation
operators that will support the application of the test
criteria.

The metamorphic relations defined in the previous
step should guarantee the mechanisms to evaluate the
mutants that represent the faults, which are commonly
made during the software development process. Those
pieces of information would allow us to define an
adequacy metric for the modeled faults concerning the
test cases developed during the test activity.

2.4 Automation of the proposed test approach
Testing techniques heavily rely on support and
automation to enable their application to real projects.
Without this, testing tends to be a costly and error-prone
activity [9].

This activity enables the application of the content
developed during the previous steps.

3. Results
In this section, we detail the main results achieved so
far. First, we present the general results obtained from
an exploratory study on the application of metamorphic
tests. Afterwards, we discuss the feasibility and
necessity of applying automated tests for the VR
domain. Thus, the remaining section responds to the
previously defined research question.

3.1 Analyzing the application of metamorphic
relations in similar contexts
We have observed that many works in the literature
present solutions that use metamorphic testing in several
domains. Therefore, in this study, we investigate the ex-
isting challenges of using existing metamorphic rela-
tionships for new problems. The aim is to verify the
ability to adapt metamorphic relationships since the
greatest challenge of success in metamorphic testing ap-
plications lies in the appropriate definition of metamor-
phic relationships. Moreover, this is a task that requires
the expertise of a domain expert.

We successfully adapted, without making any major
changes, metamorphic relationships to similar problems.
The results of the experiments indicated good results in
terms of the ability to reveal faults. These results
indicate the possibility of conducting similar work for
the VR domain.

The results of the experiments indicated good results
in terms of the ability to reveal faults. These results
show the possibility of conducting similar work for the
VR domain [10].

3.2 Software testing practice in the VR domain
We discussed the main challenges of software testing
practice in the VR domain [11]. Some of the critical
issues related to the quality of these systems were
pointed out and possible solutions were also discussed
that could be used and adapted to deal with such issues.

The study was guided by 3 research questions,
whose objectives were: to understand the state of the
practice of software testing in the context of VR
programs (RQ1), to measure metrics and quality
attributes in VR software (RQ2), and finally to evaluate
fault proneness in the software analyzed (RQ3).

Results showed that most of the open source VR
projects fail to present quality principles, such as the
presence of test cases in their source code. This problem
extends to the quality of the code produced as untested
code tends to present a higher amount of code
characteristic that may indicate a code smell. Similarly,
we also note that untested code snippets tend to be more
prone to failures than code snippets that have been
properly tested.

Comunicações em Informátca v3, nv2, dez/2019
DOI: 10v22478/ufpbv2595-0622v2019 3n2v49451 2

3.3 Survey with interest groups
Software development is an extremely complex
business. To be successful, software teams also need to
consider aspects such as user satisfaction, as well as the
functionality of the software itself. User satisfaction can
only be guaranteed when the software development
team implements an entire user-centric development
process [12].

Similarly, we believe that the software testing phase,
which also makes up one of the development phases,
should also have this kind of concern. Therefore, it is
necessary to understand the point of view of
researchers, developers, designers, and users in order to
target software testing activity that address stakeholders’
major issues, thus prioritizing verification for failures
that should have a greater impact on VR applications.

To do so, we asked stakeholders’ opinions through a
survey, in which the participant answered questions
about what types of failures in VR applications
contribute to a poor experience. The purpose of this
study is to gain an insight into stakeholders (e.g., which
types of failures are most critical, which are less
relevant, how much each affects the quality of the end
product, etc.) and to investigate the knowledge of the
groups of interest regarding specific types of failures in
VR applications.

4. Discussion
After analyzing the results obtained from the study
described in Subsection 3.1, which sought to understand
the effectiveness of applying metamorphic relationships
already existing in the literature to similar problems, it
was decided, based on the results and the bibliographic
survey conducted during the development of this work,
to perform a similar study applied to the VR domain.

The results presented by Chan et al. [13] and by
Donaldson et al. [14] are under analysis in order to
verify the applicability of the proposed metamorphic
relations to the VR domain. To achieve this, an
experiment that will use the set of applications adopted
during the development of the activity described in
Subsection 3.2 is currently being prepared.

The studies cited above discuss, respectively, the
application of metamorphic testing to the domain of
programs that generate meshes and shader compilers.
Due to the similarity of characteristics between such
applications and VR applications, we believe that we
can explore the results of these studies so as to propose
similar metamorphic relations for the VR domain. We
intend to use the results of this activity to corroborate
the expected results in the development of the activities
described in Subsection 2.1.

The results of the work described in Subsection 3.3
discuss the main challenges related to using software
testing practice in the VR domain. A collection of 119
VR projects, available in open source projects and
manually analyzed, was cataloged to understand the
state of the practice concerning the application of
software testing techniques. We observed that most of
the projects do not maintain software testing artifacts.

The lack of concern regarding software testing
implies a high incidence of code smells in the projects
analyzed. The presence of code smells points out that
about 12% of the analyzed VR classes are fault-prone,

revealing a significant risk to the success and
maintenance of the projects. The distribution of these
classes was also evaluated when observed concerning
the size of the projects analyzed. It was observed that
the larger a project becomes, there is a higher incidence
of fault-prone classes.

The preliminary evaluation of the results of the
survey being conducted shows a high recognition of the
need for software testing practice for VR applications
(up to 80% of the respondents), but a low observation,
from the point of view of the roles involved, regarding
which approaches and techniques should be applied
during the VR application development process. The
results also indicate a low concern of the respondents
regarding the need to observe quality aspects related to
the network, audio and network. In general, interest
groups tend to attach more importance to visual aspects
such as physics and design issues. These results serve as
a motivation for the development of the activity
discussed in Subsection 2.1, as they show aspects
considered fundamental by the roles involved in the
process.

One last point that can be noted is the poor
observation of the respondents regarding various quality
aspects that should be guaranteed in a VR application.
Based on the set of major flaws cataloged for 3D games
[15], which also fall under VR applications, we
observed that respondents are not aware of most of
them. This result points to a scenario that may indicate
that those involved are not aware of the risk of the
presence of this type of failure.

5. Conclusion
The differences between general purpose software and
VR applications, such as the lack of complex data
structures, conditionals, and loops makes the application
of traditional software testing methods inefficient. This
paper discussed the major challenges existing in order to
apply software testing methods for VR applications and
recognized some limitations. Furthermore, we presented
a proposal that addresses such problems by combining
fault-based testing and metamorphic testing; we also
outline the focus of our research and present the main
objectives of our work and some preliminary results.

Regarding the preliminary results, we focused on
investigating the possibility of applying existing
knowledge developed in similar areas that could be used
in the VR domain. Furthermore, we discussed the main
challenges related to using software testing practices in
the VR domain by analyzing open-source VR projects.
We also started collecting information regarding major
issues that impacts experience in VR applications. In
order to do so, we started interviewing principal roles
(researchers, developers, designers, professors, students,
and users) involved in the development process of VR
applications. By understanding their point of view, we
intend to deliver a less biased software testing approach.

As future work, we are consolidating the results of
Objectives 1 and 2 in order to address the major goal of
the project that consists of proposing a software testing
approach specific to VR domain considering the details
and specificities related to it.

Comunicações em Informátca v3, nv2, dez/2019
DOI: 10v22478/ufpbv2595-0622v2019 3n2v49451 3

Acknowledgments
Stevão A. Andrade research was funded by FAPESP
(São Paulo Research Foundation), process number
2017/19492-1. This study was also financed in part by
FAPESP (São Paulo Research Foundation) process
number 2019/06937-0. The authors are grateful to
Brazilian National Council of Scientific and
Technological Development (CNPq) for assistance
(process 308615/2018-2), and National Institute of
Science and Technology – Medicine Assisted by
Scientific Computing - INCT-MACC (Process
157535/2017-7).

Bibliography
[1] LaValle, S. M. (2019) Virtual Reality. Cambridge

University Press.
[2] Santos, A. C. C.; Delamaro, M. E.; Nunes, F. L. S. (2013)

The relationship between requirements engineering and
virtual reality systems: A systematic literature review.
Proc. XV Symposium on Virtual and Augmented Reality,
p. 53-62. IEEE. DOI: 10.1109/SVR.2013.52

[3] Rapps, S.; Weyuker, E. J. (1985) Selecting software test
data using data flow information. IEEE Transactions on
Software Engineering SE-11(4): 367-375. DOI:
10.1109/TSE.1985.232226

[4] Barr, E. T.; Harman, M.; McMinn, P.; Shahbaz, M.; Yoo, S.
(2015) The oracle problem in software testing: A survey.
IEEE Transactions on Software Engineering 41(5): 507-
525. DOI: 10.1109/TSE.2014.2372785

[5] Chen, T. Y.; Kuo, F.C.; Liu, H.; Poon, P. L.; Towey, D.;
Tse, T. H.; Zhou, Z. Q. (2018) Metamorphic testing: A
review of challenges and opportunities. ACM Computing
Surveys 51(1): article 4. DOI: 10.1145/3143561

[6] Harman, M.; McMinn, P.; Shahbaz, M.; Yoo, S. (2013) A
Comprehensive Survey of Trends in Oracles for Software
Testing. University of Sheffield Tech. Rep. CS-13-01: 1-
32. DOI: 10.1.1.371.9004

[7] Smith, B. H.; Williams, L. (2009) Should software testers
use mutation analysis to augment a test set? Journal of

Systems and Software 82(11): 1819-1832. DOI:
10.1016/j.jss.2009.06.031

[8] Chekam, T. T.; Papadakis M.; Le Traon, Y.; Harman M.
(2017) An Empirical Study on Mutation, Statement and
Branch Coverage Fault Revelation That Avoids the
Unreliable Clean Program Assumption. 2017 IEEE/ACM
39th International Conference on Software Engineering, p.
597-608. IEEE. DOI: 10.1109/ICSE.2017. 61

[9] Lu L. (2001) Software testing techniques. Carnegie Mellon
University Tech. Rep. 17-939A: 1-20.
http://www.cs.cmu.edu/~luluo/Courses/17939Report.pdf
Accessed on 21/11/2019.

[10] Andrade, S. A; Santos I; Junior, C. B; Júnior, M; Souza,
S. R.S; Delamaro, M. E. (2019) On Applying
Metamorphic Testing: An Empirical Study on Academic
Search Engines. Proc. IEEE/ACM 4th International
Workshop on Metamorphic Testing, p. 9-16 DOI:
10.1109/MET.2019.00010

[11] Andrade, S. A; Nunes, F. L. S; Delamaro, M. E. (2019)
Towards the Systematic Testing of Virtual Reality
Programs. Proc. XXI Symposium on Virtual and
Augmented Reality, p. 180-189. IEEE. DOI:
10.1109/SVR.2019.00044

[12] Scholtz, J.; Morse, E. (2003) Using consumer demands to
bridge the gap between software engineering and usability
engineering. Software Process: Improvement and Practice
8(2): 89-98. DOI: 10.1002/spip.172

[13] Chan, WK.; Ho, J. CF.; Tse, TH. (2007) Piping
classification to metamorphic testing: An empirical study
towards better effectiveness for the identification of
failures in mesh simplification programs. Proc. 31st
Annual Int. Computer Software and Applications Conf., p.
397-404. IEEE. DOI: 10.1109/COMPSAC.2007.167

[14] Donaldson, A. F.; Evrard, H.; Lascu, A.; Thomson, P.
(2017) Automated testing of graphics shader compilers.
Proc. ACM on Programming Languages, Article 93. ACM.
DOI: 10.1145/3133917

[15] Levy, L.; Novak, J. (2009) Game development essentials:
Game QA & Testing. Cengage Learning.

Comunicações em Informátca v3, nv2, dez/2019
DOI: 10v22478/ufpbv2595-0622v2019 3n2v49451 4

http://doi.org/10.1109/SVR.2013.52
http://doi.org/10.1145/3133917
http://doi.org/10.1109/COMPSAC.2007.167
http://doi.org/10.1002/spip.172
http://doi.org/10.1109/SVR.2019.00044
http://doi.org/10.1109/MET.2019.00010
http://doi.org/10.1109/ICSE.2017.61
http://doi.org/10.1109/ICSE.2017.61
http://doi.org/10.1016/j.jss.2009.06.031
http://doi.org/10.1.1.371.9004
http://doi.org/10.1145/3143561
http://doi.org/10.1109/TSE.2014.2372785
http://doi.org/10.1109/TSE.1985.232226

