PETROLOGY AND GEOCHEMISTRY OF INTRUSIVE ROCKS FROM THE SOUTH OF NAQADEH, WEST AZERBAIJAN, IRAN

Autores

  • Abdollah Kordi Ph.D. Student in Petrology, Department of Geology, North Tehran Branch, Islamic Azad University, Tehran, Iran
  • Afshin Ashja-Ardalan Assistant Professor, Department of Geology, North Tehran Branch, Islamic Azad University, Tehran, Iran
  • Seyed-Jamal Sheikhzakariayi Assistant Professor, Department of Geology, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • Nasser Ashrafi Assistant Professor, Department of Geology, Payame Noor University, Tehran, Iran

DOI:

https://doi.org/10.22478/ufpb.2179-7137.2019v8n3.47743

Palavras-chave:

Naqadeh Intrusive Rocks, Sanandaj–Sirjan Zone, Petrography, Minerals Chemistry, I-Type Granite

Resumo

The intrusive rocks of Naqadeh are features of Laramide magmatism in the Sanandaj–Sirjan zone. According to petrographic studies, the composition of intrusions consist of acidic, intermediate, and basic rocks. including syenogranites, monzogranite, granodiorites, quartz diorites, quartz monzonites, quartz monzonite, quartz syenite, and olivine gabbro—in order of abundance. Minerals forming intrusive rocks include alkali feldspar (orthoclase and microcline), quartz, plagioclase (andesine to anorthite), amphibole (magnesiohornblende to tschermakite hornblende), pyroxene (diopside), olivine (hyalosiderite to hortonlite), apatite, titanite, zircon, muscovite, and opaque minerals. The chemical analysis of the granitoids revealed their potassium-rich calc-alkaline nature, falling within the meta-alumin to per-alumin range in terms of alumin saturation. Tectonomagmatic diagrams for the studied rocks suggest that they are compatible with granitoids of the continental-subduction zone. Primitive-mantle- and chondrite-normalized spider diagrams indicated no depletion in any elements, exhibiting a negative overall slope which is consistent with subduction patterns (negative Ta, Ti, Zr anomalies, and positive K anomaly). Overall, a review of field observations, mineralogy, geochemistry, and diagrams illustrating the sources of granites showed that the intrusive rocks in the study region are, in fact, I-type granite and that the magmatism is a result of the subduction of the oceanic crust, Neotethys, under the Iranian continental crust.

Downloads

Não há dados estatísticos.

Referências

Agemar, T., Wörner, G., & Heumann, A. (1999). Stable isotopes and amphibole chemistry on hydrothermally altered granitoids in the North Chilean Precordillera: a limited role for meteoric water?. Contributions to Mineralogy and Petrology, 136(4), 331-344.

Aghanabati, A. (2004). Geology of Iran. Geological survey of Iran, Tehran (in Persian).

Alavi, M. (1994). Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics, 229(3-4), 211-238.

Alavi, M. (2004). Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution. American journal of science, 304(1), 1-20.

Berberian, M., & King, G. C. P. (1981). Towards a paleogeography and tectonic evolution of Iran. Canadian journal of earth sciences, 18(2), 210-265.

Boynton, W. V. (1984). Cosmochemistry of the rare earth elements: meteorite studies. In Developments in geochemistry (Vol. 2, pp. 63-114). Elsevier.

Chappell, B. W., & White, A. J. (2001). Two contrasting granite types: 25 years later. Australian journal of earth sciences, 48(4), 489-499.

Chivas, A. R. (1982). Geochemical evidence for magmatic fluids in porphyry copper mineralization. Contributions to Mineralogy and Petrology, 78(4), 389-403.

Cox, K. G. BELL, JD: PANKHURST, RJ (1979) The interpretation of igneous rocks. William Clowes, London, Britain.

Deer, W., Howie, R., & Zussman, J. (1992). An introduction to the rock-forming minerals: Essex. England: Longman Scientific and Technology.

Ghalamghash, J., Nédélec, A., Bellon, H., Abedini, M. V., & Bouchez, J. L. (2009). The Urumieh plutonic complex (NW Iran): A record of the geodynamic evolution of the Sanandaj–Sirjan zone during Cretaceous times–Part I: Petrogenesis and K/Ar dating. Journal of Asian Earth Sciences, 35(5), 401-415.

Ghasemi, A., & Talbot, C. J. (2006). A new tectonic scenario for the Sanandaj–Sirjan Zone (Iran). Journal of Asian Earth Sciences, 26(6), 683-693.

Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J., & Frost, C. D. (2001). A geochemical classification for granitic rocks. Journal of petrology, 42(11), 2033-2048.

Hassanzadeh, J., Stockli, D. F., Horton, B. K., Axen, G. J., Stockli, L. D., Grove, M., ... & Walker, J. D. (2008). U-Pb zircon geochronology of late Neoproterozoic–Early Cambrian granitoids in Iran: Implications for paleogeography, magmatism, and exhumation history of Iranian basement. Tectonophysics, 451(1-4), 71-96.

Hawthorne, F. C. (1983). The crystal chemistry of the amphiboles; Appendices. The Canadian Mineralogist, 21(2), 353-480.

Khalaji, A. A., Esmaeily, D., Valizadeh, M. V., & Rahimpour-Bonab, H. (2007). Petrology and geochemistry of the granitoid complex of Boroujerd, Sanandaj-Sirjan Zone, Western Iran. Journal of Asian Earth Sciences, 29(5-6), 859-877.

Khodami, M., Kamali Shervedani, A (2018) Mineralogical and geochemical characteristics of the Chah-Shur clay deposit, Southeast of Isfahan, Iran, Iranian Journal of Earth Sciences, 10(2): 135-141.

Leake, B. E., Woolley, A. R., Arps, C. E., Birch, W. D., Gilbert, M. C., Grice, J. D., ... & Linthout, K. (1997). Nomenclature of Amphiboles: Report of the Subcommitte on Amphiboles of the International Mineralogical Association Commision on New Minerals and Mineral Names (3). Canadian Mineralogist, 35(1), 219-248.

Maniar, P. D., & Piccoli, P. M. (1989). Tectonic discrimination of granitoids. Geological society of America bulletin, 101(5), 635-643.

Mazhari, S. A., Bea, F., Amini, S., Ghalamghash, J., Molina, J. F., Montero, P., ... & Williams, I. S. (2009). The Eocene bimodal Piranshahr massif of the Sanandaj–Sirjan Zone, NW Iran: a marker of the end of the collision in the Zagros orogen. Journal of the Geological Society, 166(1), 53-69.

Mobashergarmi, M., Zaraisahamia, R., Aghazadeh, M., Ahmadikhalaji, A., Ahmadzadeh, GH (2018) Mineral chemistry and thermobarometry of Eocene alkaline volcanic rocks in SW Germi, NW Iran, Iranian Journal of Earth Sciences 10 (1) 39-51.

Mohajjel, M., & Fergusson, C. L. (2000). Dextral transpression in Late Cretaceous continental collision, Sanandaj–Sirjan zone, western Iran. Journal of structural geology, 22(8), 1125-1139.

Mohajjel, M., Fergusson, C. L., & Sahandi, M. R. (2003). Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan zone, western Iran. Journal of Asian Earth Sciences, 21(4), 397-412.

Morimoto, N. (1988). Nomenclature of pyroxenes. Mineralogy and Petrology, 39(1), 55-76.

Novruzov, N., Valiyev, A., Bayramov, A ., Mammadov, S., Ibrahimov, J., Ebdulrehimli, A (2019) Mineral composition and paragenesis of altered and mineralized zones in the Gadir low sulfidation epithermal deposit (Lesser Caucasus, Azerbaijan), Iranian Journal of Earth Sciences, 11(1): 14-29.

Numan, N. M. (2000). Discussion on ''Dextral transpression in Late Cretaceous continental collision, Sanandaj-Sirjan Zone, western Iran'' [Journal of Structural Geology, 22 8) 2000) 1125ą1139]. Journal of Structural Geology, 22(8), 1125ą1139.

Omrani, J., Agard, P., Whitechurch, H., Benoit, M., Prouteau, G., & Jolivet, L. (2008). Arc-magmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences. Lithos, 106(3-4), 380-398.

Peccerillo, A., & Taylor, S. R. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to mineralogy and petrology, 58(1), 63-81.

Rollinson, H. R. (1993). Using geochemical data: evaluation. Presentation, interpretation. Singapore. Ongman.

Şengör, A. M. C. (1990). A new model for the late Palaeozoic—Mesozoic tectonic evolution of Iran and implications for Oman. Geological Society, London, Special Publications, 49(1), 797-831.

Sepahi, A. A. (1999). Petrology of the Alvand plutonic complex with special reference on granitoids. PhD, Tarbiat-Moallem University, Tehran, Iran (in Persian).

Shahabpour, J. (2007). Island-arc affinity of the Central Iranian volcanic belt. Journal of Asian Earth Sciences, 30(5-6), 652-665.

Shand, S. J. (1943). Eruptive rocks: their genesis, composition, and classification, with a chapter on meteorites. J. Wiley & sons, Incorporated.

Sheikholeslami, M. R., Pique, A., Mobayen, P., Sabzehei, M., Bellon, H., & Emami, M. H. (2008). Tectono-metamorphic evolution of the Neyriz metamorphic complex, Quri-kor-e-sefid area (Sanandaj-Sirjan Zone, SW Iran). Journal of Asian Earth Sciences, 31(4-6), 504-521.

Stocklin, J. (1968). Structural history and tectonics of Iran: a review. AAPG bulletin, 52(7), 1229-1258.

Wood, D. A., Joron, J. L., Treuil, M., Norry, M., & Tarney, J. (1979). Elemental and Sr isotope variations in basic lavas from Iceland and the surrounding ocean floor. Contributions to Mineralogy and Petrology, 70(3), 319-339.

Yazdi, A., Ashja-Ardalan, A., Emami, M.H., Dabiri, R., & Foudazi, M. (2017). Chemistry of Minerals and Geothermobarometry of Volcanic Rocks in the Region Located in Southeast of Bam, Kerman Province. Open Journal of Geology, 7, 1644-1653.

Downloads

Publicado

2019-08-30

Como Citar

KORDI, A.; ASHJA-ARDALAN, A.; SHEIKHZAKARIAYI, S.-J.; ASHRAFI, N. PETROLOGY AND GEOCHEMISTRY OF INTRUSIVE ROCKS FROM THE SOUTH OF NAQADEH, WEST AZERBAIJAN, IRAN. Gênero & Direito, [S. l.], v. 8, n. 3, 2019. DOI: 10.22478/ufpb.2179-7137.2019v8n3.47743. Disponível em: https://periodicos.ufpb.br/ojs2/index.php/ged/article/view/47743. Acesso em: 19 nov. 2024.

Edição

Seção

Seção Livre