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Abstract: This paper aims to calibrate a physically-based, event-oriented runoff-erosion model by 

means of a global optimization method known as cuckoo-host co-evolution (CHC) 
which has co-evolutionary changes incorporated into the traditional cuckoo search 
algorithm. The physically-based erosion model that was chosen to be optimized here is 
the watershed erosion simulation program (WESP), which was developed for small 
semiarid basins to simulate runoff and erosion processes. The optimization technique 
was tested with the field data collected in an experimental watershed located in a 
semiarid region of Brazil, and such technique showed to be effective in order to locate 
the optimal erosion parameter values. On the basis of these results, such values for a 
semiarid region are given, which could be recommended as an initial estimate for other 
similar areas. 
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INTRODUCTION 

Physically-based erosion models seem to be a useful 
tool for basin simulation. However, they have 
parameters which cannot be directly measured in the 
field. In this context, many algorithms for function 
optimization are employed to find values for those 
parameters. However, it is difficult to assure that the 
final value for the parameter is not a result of either a 
local minimum or another trap. Therefore, more robust 
algorithms are required to estimate the parameter’s final 
value (Soares Júnior et al., 2010; Santos et al., 2011). 

There are different methods for solving an 
optimization problem. Some of these  methods are 
inspired from natural processes. The Cuckoo search is a 
new evolutionary optimization algorithm which was 
inspired by the obligate brood parasitism of some 
cuckoo species by laying their eggs in the nests of other 
host birds. Some host birds can engage direct conflict 
with the intruding cuckoos, e.g., if a host bird discovers 
the eggs are not their own, it will either throw these 
alien eggs away or simply abandon its nest and build a 
new nest elsewhere. Environmental features and the 
immigration of societies (groups) of cuckoos hopefully 
lead them to converge and find the best environment for 
breeding and reproduction. This best environment is the 
global maximum of objective functions.  

This paper utilizes the cuckoo search for optimize 
the parameters of the WESP runoff-erosion model to 
estimate runoff and sediment yield in an experimental 
basin in a semiarid area of northeastern Brazil. 

It is divided in seven sections. In the first one, it was 
given a brief introduction of the work. In second 
section, a review about the cuckoo search optimization. 
The third section contains tests with some mathematic 
function. In the fourth section, the WESP is explained. 
The fifth section contains information about the studied 
area. In the sixth section, the application and 
optimization results are shown. In the seventh and last 
section, some conclusions are presented. 
 
CUCKOO SEARCH OPTIMIZATION 

A novel method of global optimization based on the 
behavior of cuckoos was proposed by Yang & Deb 
(2009).  Cuckoos are brood parasites that lay their eggs 
in the nests of other birds (such as crows) who serve as 
hosts to hatch their eggs. It was shown that the so-called 
“cuckoo search” algorithm is quite effective for global 
optimization. The works of Yang & Deb (2010), 
Civicioglu & Besdok (2011), Rajabioun (2011) and 
Valian et al. (2011) further confirmed that the “cuckoo 
search” algorithm, in its original or improved version, 
proves to be very effective. The method has been 
successfully tested on a large number of benchmark 
functions of varied dimensions and difficulty levels. 

The original “cuckoo search algorithm” of Yang & 
Deb (2009) or any of its variants is based on the idea 

how cuckoos lay their eggs in the host nests; how, if not 
detected and destroyed, the eggs are hatched to chicks 
by the hosts; how the cuckoo chicks hatched by the host 
later join the population of cuckoos and how a search 
algorithm based on such a scheme can be used to find 
the global optimum of a function. To implement this 
search scheme, Yang & Deb (2009) formulated the 
following idealized rules: (a) Each cuckoo lays a single 
egg into a randomly chosen host nest from among n 
nests; (b) The nests with better quality eggs (implying 
better fitness value of the function concerned), if not 
detected, would be hatched to grow into the cuckoo 
chicks, who would join the next generation; (c) The 
number of available host nests is fixed.  The host can 
detect the alien egg with a probability [0, 1] and, if 
detected, it will either abandon the nest  and build a new 
nest elsewhere or destroy the egg; (d) When generating 

new solutions  )1( t
ix  from the old one  )(t

ix , Lévy 
flight is performed with the parameter 1 < β < 3 and, 
thus,              

                              

)(Levy  )()1(  t
i

t
i xx                 (1) 

 
for, say cuckoo  i;  α = O(1),   means the Hadamard 
product operator. The Lévy flight is a type of random 
walk which has a power law step length distribution 
with a heavy tail. It has been found (Brown et al., 2007; 
Pavlyukevich, 2007) that Lévy flights is an oft-observed 
random walk in many real life situations (Viswanathan 
et al., 1996; 1999; 2002). 

Researchers in ornithology have found that brood 
parasitism leads to co-evolution of the parasites as well 
as the hosts (Rothstein, 1990; Krüger et al., 2009). 
Mishra (2012) incorporated the co-evolutionary changes 
into the “Cuckoo Search” algorithm and tested the 
efficiency of the two populations (of the cuckoos and 
the hosts) in finding the global optimum of some 
benchmark functions. This new suggested algorithm 
was named as the “Cuckoo-Host Co-Evolution” or CHC 
algorithm.  

To elucidate, let there be n parasites and equally 
many (although not necessarily) hosts. Each parasite 
individual would be represented by a point (x in m-
dimensional space) and similarly each host individual 
would be represented by a point (y in m-dimensions). 
These points may be randomly generated and would lie 
in the domain of the function to be optimized.    

Each cuckoo would take a Lévy flight and if its post-
flight fitness is better than its pre-flight fitness, it would 
randomly choose a host nest that has not as yet been 
invaded by another cuckoo and the quality of the host 
eggs are inferior to the cuckoo egg. If this condition is 
not met, it would not lay any egg in the host nest. The 
egg of a successful parasite may, however, be detected 
(with probability p) by the host and be destroyed. If not 
detected, however, it would be hatched in the host nest 
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and eventually join the cuckoo population. Only the best 
n cuckoos, however, would enter into the next 
generation. The Lévy flight will follow the attractive 
rule as given hereunder:  

 

     t
ij

t
ij

t
ij

t
ij xyrxx  )(Levy 0.51

)1(     (2) 

 

where   2/3;0001.0 2
x  r .Each un-invaded host 

(crow) would take a Lévy flight and if its post-flight 
fitness is better than its pre-flight fitness, it would 
update itself, else it would retain its old status. The Lévy 
flight will follow the repulsive rule as given hereunder: 
  

     t
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t
ij

t
ij

t
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where   3/5;0001.0 2  yr .It may be noted that 

due to the smaller value of β, the cuckoos will have 
wider flight ranges than the host (crows) will have 
(Gutowski, 2001; Mishra, 2012).   

On completion of this process the cuckoo and the 
host populations would enter the next generation 
(iteration). At each next iteration (t), the probability of 
rejection (of the cuckoo eggs in the host nest) will 
increase under the rule as: 

 




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such that the probability will be almost )( ba  at last. In 
this, a could be a small number such as 0.01 and b could 
be 0.6 or even 0.7. In this simple case, the probability of 
rejection increases linearly. However, the probability of 
rejection may also follow the Gompertz growth curve 
given by 
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where b may be as high as 0.7. This algorithm is co-
evolutionary on two accounts: first that both – the 
invaders (cuckoos) and the hosts (crows, say) – take 
levy flights in view of their cohort and themselves 

( t
ijy and t

ijx ) and, secondly, that at every subsequent 

iteration, the probability of rejection increases. Also, 
since only the un-invaded hosts take Lévy flights, their 
strategies depend on the success of the invaders. 
 
TESTS WITH MATHEMATICAL FUNCTIONS 
 
This section describes some test functions used in the 
evaluating performance of the CHC algorithm. These 
functions were extracted from the literature (Mishra, 

2006) about genetic algorithms, evolutionary strategies 
and global optimization. Table 1 shows the results of 
the CHC algorithm to optimize these functions. 
 
Shubert function 
 
The 2-dimension Shubert function (Fig. 1a) has 760 
local minima, 18 of which are global minima with         
–186.73067. They are unevenly spaced.  
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where xi ≤ 10, i = 1, 2. 

 
Penholder function 
 
This is a multi-modal function (Fig. 1b) with the 
minima equal to –0.96354, given as 
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where the search domain is –11≤ xi ≤ 11, i = 1, 2.   
 
Bird function 

This is a bi-modal function (Fig. 1c) with minimum 
equal to −106.764537, given as 
 

           221
sin1

2
cos1

121

2
1

2
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where the search domain is –2π ≤ xi ≤ 2π, i = 1, 2.   

 

Himmelblau function 
 

This is a multi-modal function (Fig. 1d), used to test the 
performance of optimization algorithms. The function is 
defined by: 
 

   22
21

2

2
2
121 711),(  xxxxxxf         (9) 

 
where –10 ≤ xi ≤ 10, i = 1, 2. 
 

Table 1. Global minima for the testing functions using the CHC 
algorithm 

Function x1 x2 fmin(x1, x2) 
Shubert –0.8003 –1.4251 –186.7309 

Penholder 9.6462 –9.6462 –0.9635 
Bird –1.5821 –3.1302 –106.7645 

Himmelblau 3.0000 2.0000 0.0000 
Multimodal 0.0000 0.0000 –1.0000 
Rosenbrock 1.0000 1.0000 0.0000 
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This function has four identical local minima equal 
to 0. The locations of all the minima can be found 
analytically. However, because they are roots of cubic 
polynomials, when written in terms of radicals, the 
expressions are somewhat complicated. 

 

Multimodal function 
 
This function (Fig. 1e), with minimum equal to –1, is 
defined by: 
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where the search domain is –10 ≤ xi ≤ 10, i = 1, 2.   

 
Rosenbrock function 
 
This function (Fig. 1f) is a non-convex function used as 
a performance test problem for optimization algorithms. 
It is also known as Rosenbrock’s valley or 
Rosenbrock’s banana function. 

The global minimum is inside a long, narrow, 
parabolic shaped flat valley. To find the valley is trivial. 
To converge to the global minimum, however, is 
difficult.  

It is defined by: 
 

   22
12

2
121 1001),( xxxxxf             (11) 

 
It has a global minimum at x1 = 1 and x2 = 1 where 

f (x1, x2) = 0. A different coefficient of the second term 
is sometimes given, but this does not affect the position 
of the global minimum. 

 

 
Fig. 1 The 3D view (f, x1, x2) for (a) Shubert function, (b) Penholder 

function, (c) Bird function, (d) Himmelblau function, (e) 
Multimodal function and (f) Rosenbrock function. 

WESP MODEL 
 
The WESP model (Lopes & Lane, 1988) is a physically-
based distributed model, which computes runoff and 
sediment yield based on kinematic waves approximation 
for the surface flow due to excess rainfall re (m/s) in 
small basins. The rainfall excess is computed by the 
subtraction of the infiltration rate f(t) from the rainfall 
intensity I, i.e., re = I  f(t). The infiltration process is 
modeled with the Green-Ampt equation (Green & 
Ampt, 1911): 
 

    








tF

N
Ktf s

s 1                       (12) 

 
in which, Ks is the effective saturated soil hydraulic 
conductivity (m/s), F(t) is the cumulative depth of 
infiltrated water (m), Ns is the soil moisture-tension 
parameter. The surface flow is considered to be either 
the overland flow on planes or channel flow. 

 
Overland flow 
 
The spatially varied overland flow is considered one-
dimensional and is described by Manning’s turbulent 
flow equation as: 
 

2/13/21
fH SR

n
u 

                           
(13) 

 
in which u is the local mean flow velocity (m/s), RH(x,t) 
is the hydraulic radius (m), Sf is the friction slope and n 
is the Manning friction factor. Thus, the local velocity 
for plane flow is obtained considering the hydraulic 
radius equal to the depth of flow (RH = h) and using the 
kinematic wave approximation resulting in the friction 
slope being equal to the plane slope (S0 = Sf): 
 

1-m'  = hu                               (14) 
 

where h is the depth of flow (m), ' is a parameter 
related to surface slope and roughness, equal to 
(1/n)S0

1/2, and m is a geometry parameter whose value is 
set to 5/3 for wide rectangles. The equation of continuity 
for the one-dimensional plane can be written as: 
 

e
m r

x

h
mh

t

h







 1                     (15) 

 
From Eqs (14) and (15), the overland flow velocity 

and depth (u, h) is calculated for a given rainfall excess re. 
Sediment transport is considered as the erosion rate 

in the plane reduced by the deposition rate within the 
reach. The erosion occurs due to raindrop impact as well 
as surface shear. Thus, the continuity equation for 
sediment transport is expressed as: 
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where c is the sediment concentration in the surface 
flow (kg/m3), eI is the rate of sediment erosion due to 
rainfall impact (kg s/m2), eR is the erosion rate due to 
shear stress (kg s/m2), and d is the rate of sediment 
deposition (kg s/m2). The rate of sediment erosion due 
to rainfall impact eI is a function of the rate of 
detachment by raindrop impact and the rate of 
transport of sediment particles by shallow flow. A 
simple functional form of detachment by raindrop 
impact could use rainfall intensity as a measure of the 
erosivity of raindrop impact (Foster, 1982), and in 
order to include the process of sediment transport by 
shallow flow on hillslopes, Lane & Shirley (1985) 
included rainfall and expressed eI as: 
 

eI = KI I re                                (17) 
 

where KI is the soil detachability parameter (kg s/m4). 
The rate of sediment erosion due to shear stress eR is 
expressed by an entrainment rate proportional to a 
power of the average shear stress acting on the soil 
surface (Croley, 1982; Foster, 1982) as: 
 

eR = KR 1.5                               (18) 
 

where KR is a soil erodibility factor for shear 
(kg m/N1.5 s), and  is the effective shear stress 
(N/m2), which is given by  = hSf,  being the specific 
weight of water (N/m3). Finally, the rate of sediment 
deposition d in Eq. (16) is not only the deposition of the 
particular sediment per unit of area and per unit of time, 
but it also represents the rate at which the column of 
suspension loses solids per unit of time, and is 
expressed as (Einstein, 1968): 
 

d = pVsc                                (19) 
 

where p is a coefficient that depends on the sediment 
and fluid properties, set to 0.5 in this study based on 
Davis (1978), c(x,t) is the plane sediment concentration 
in transport (kg/m3), and Vs is the particle fall velocity 
(m/s) computed by Rubey’s equation: 
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where s is the specific weight of sediment (N/m3),  is 
the kinematic viscosity of water (m2/s), ds is the mean 

diameter of the sediment (m), and g is the acceleration 
of gravity (m/s2).  
 
Channel flow 
 
The concentrated flow in the channels is also described 
by continuity and momentum equations. The 
momentum equation could be reduced to the discharge 
equation with the kinematic wave approximation as:  
 

Q = 'ARH
m–1                              (22) 

 
where Q is the discharge (m3/s), and A is the cross-
sectional area of flow (m²). The continuity equation for 
the channel flow is given by: 
 

Aq
x

Q

t

A









                            (23) 

 
where qA is the lateral inflow per unit length of channel. 
Equations (22) and (23) enable the calculation of channel 
flow. Since the effect of rainfall impact is negligible in the 
channel, the continuity equation for the sediment is 
expressed without the rainfall impact component by: 
 

crs deq
x

CQ

t

AC









                (24) 

 

where C(x,t) is the sediment concentration in transport 
in the channel (kg/m²), qs is the lateral sediment inflow 
into the channel (kg s/m), dc is the rate of sediment 
deposition in the channel (kg s/m), and er is the erosion 
rate of the channel bed material (kg s/m). The 
components of the net sediment flux for the channel 
segment are given as follows: the erosion rate of the 
channel bed material er is obtained from a general 
equation, initially developed for bed-load transport 
capacity (Croley, 1982; Foster, 1982): 
 

er = a( – c)
1.5                            (25) 

 

where a is the sediment erodibility parameter (kg m²/s), 
and c is the critical shear stress for sediment 
entrainment (N/m2), which is given by c = (s – )ds, 
where  is a coefficient, set to 0.047 in the present 
study, s is the specific weight of sediment (N/m3), and 
ds is the mean diameter of sediments (m). The rate of 
sediment deposition within the channel dc (kg s/m) in 
Eq. (24) is expressed by (Mehta, 1983): 
 

CVTd sWcc                                (26) 
 

where c is the deposition parameter for channels, 
considered as unity in the present case based on the 
study of Einstein (1968), and TW  is the top width of the 
channel flow (m). From Eq. (24), sediment transport 
rate (CQ) could be calculated for the overland flow with 
A and Q obtained from Eq. (23). 
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THE STUDIED AREA 
 

The WESP model was utilized to simulate runoff and 
erosion in a bare micro-basin, which is one of the four 
micro-basins of the Sumé Experimental Watershed, in 
the northeastern Brazil. Its mean slope, area and 
perimeter are 7.1%, 0.48 ha, and 302 m, respectively. 
This experimental watershed was operated from 1982 to 
1991 by SUDENE (Superintendency of Northeast 
Development, Brazil), ORSTOM (French Office of 
Scientific Research and Technology for Overseas 
Development) and UFPB (Federal University of 
Paraíba, Brazil) to obtain field data for calculating the 
runoff and sediment yield produced by rainfall in a 
natural environment (Cadier et al., 1983). 

The experimental basin includes four micro-basins, 
nine erosion plots of 100 m², and several micro-plots of 
1 m² operated under simulated rainfall within a sub-
basin of 10.7 km². The surface conditions and the slope 
were varied among the plots and micro-basins. Four 
standard rain gauges and two recording rain gauges, 
installed close to the micro-basins and plots, provided 
the rainfall data. At the outlet of the micro-basins, a 
rectangular collector was installed for the measurement 
of water and sediment discharge. A 90º triangular weir 
at the end of the collector allowed the measurement of 
outflow discharges. The collector held all the surface 
runoff and sediment discharges for most of the low to 
medium rainfall events, thereby providing a means for 
accurate runoff and sediment measurement. Based on 
the work of Santos et al. (2003, 2011, 2012), 21 events 
were selected between 1987 and 1988 and 17 more 
events were selected between 1989 and 1991 making up 
a total of 38 events. These periods were chosen because 
the micro-basin was maintained bare during them, under 
controlled conditions of maintenance. 

 
APPLICATION AND RESULTS 

Optimization of the runoff-erosion model 

A scheme of planes and channels was firstly selected 
to represent the studied area. The schematization of the 
micro-basin in 10 elements has been reported (Santos et 
al., 1994) to be the best scheme to represent the area, 
thus this schematization was selected in this studied.  

In the WESP model some parameter values are fixed 
a priori such as the specific weight of water (9.8 kN/m³), 
the specific weight of sediment (2.6 × 104 N/m³) and 
Manning friction factor, which was assumed as 0.02 for 
planes and 0.03 for channels based on the soil type, its 
grain size composition and surface characteristics. 
However, there are some parameters that are specific for 
this area which should be determined by field tests such 
as the mean diameter of sediments ds whose value was 
assumed to be equal to d50 (0.5 mm) and the saturated 
soil hydraulic conductivity Ks whose average value was 
set equal to 5.0 mm/h. 

 

                                                                The values of the other four remaining parameter 
(Ns, a, KR and KI) should be based either on the 
literature or determined by calibration with an 
optimization process. The first parameter to be 
calibrated in the WESP model is the soil moisture-
tension parameter Ns, in Eq. (12), which was calibrated 
by minimized the following runoff objective function: 

 

o

co
L L

LL
J


                               (27) 

 
where Lo is the observed runoff depth (mm) and Lc is the 
calculated one (mm). 

The other three parameters (a, KR and KI) are related 
to the erosion process, so the optimization had to be 
done according to the adjustment of computed and 
observed sediment yield data. Since there are no 
universally applicable values for these three erosion 
parameters, they were optimized using the CHC 
method. The range in which these parameters could 
vary was chosen to be 0.001 to 200 mm for Ns, 0.0001 
to 0.9 kg m² for a, 1.0 to 3.0 kg m/N1.5 s for KR, and 0.1 
× 108 to 10.0 × 108 kg s/m4 for KI, whose initial values 
of the runoff and erosion parameters were randomly set. 

The erosion objective function JE to be minimized 
was: 
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
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where Eo is the observed sediment yield (kg) and Ec is 
the calculated one (kg). The optimization for the 38 
events agreed 100% with each event (Table 2). 

The mean values of the erosion parameters are 
computed as a = 0.0441 kg m²/s, KR = 1.4594 kg m/N1.5, 
and KI = 4.4533 × 108 kg s/m4. However, since the 
larger event data (Eo > 100 kg) are more accurate than 
the smallest ones, the mean parameter values for such 
events are computed as well, as show in Table 3, i.e., 
a = 0.0147 kg m²/s, KR = 1.3666 kg m/N1.5 and 
KI = 4.3619 × 108 kg s/m4, which are more appropriate 
to be used as the mean parameters for the studied 
region. Both means (mean using all events and mean 
using the events larger than 100 kg) were used to run 
new simulation. As one can observed from Fig. 2, the 
computed sediment yield using the mean parameters of 
the events with Eo < 100 kg tends to overestimate. 

Figure 3 shows the simulation results for the 
sediment yield using the mean values of events larger 
than 100 kg. This figure shows some acceptable degree 
of agreement, except for few events, which can be 
attributed to some errors in the observed data, especially 
for the smallest sediment yield events (Fig. 4), in which 
high relative errors can be observed. 
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Table 2. Optimized values of the erosion parameters a, KR and KI, in which the events with Eo > 100 kg are highlighted 

Date 
(dd/mm/yy) 

Ns 
(m) 

a 
(kg m2/s) 

KR 

(kg m/N1.5s) 
KI × 108 

(kg s/m4) 
Lo 

(mm) 
Lc 

(mm) 
Eo 

(kg) 
Ec 

(kg) 

07/02/87 0.0731 0.0028 1.3779 1.8658 0.190 0.1900 4.092 4.092 
12/02/87 0.0170 0.1201 1.6759 2.2573 0.060 0.0630 19.188 19.188 
02/03/87 0.0291 0.0060 1.1628 6.5578 0.060 0.0560 0.967 0.967 
02/05/87 0.0317 0.0267 1.8672 2.0008 2.310 2.3100 1214.522 1214.522 
01/06/87 0.0605 0.2040 1.8414 2.7746 0.003 0.0030 0.941 0.941 
29/06/87 0.0018 0.0058 1.1208 2.8859 1.370 1.3709 168.184 168.184 
04/07/87 0.0059 0.8912 1.4312 0.1000 0.010 0.0070 5.273 5.273 
20/01/88 0.0883 0.0132 1.1497 0.5720 5.710 5.7121 2061.862 2061.862 
23/02/88 0.0079 0.0209 1.0934 7.4482 1.580 1.5800 568.490 568.490 
12/03/88 0.0050 0.0065 2.6470 1.3698 0.120 0.1210 4.378 4.378 
14/03/88 0.0051 0.0122 1.0914 6.7962 5.670 5.6690 1875.531 1875.531 
19/03/88 0.0060 0.0159 1.0464 6.1307 1.690 1.6890 580.076 580.079 
24/03/88 0.0058 0.0034 1.0575 0.5845 13.520 13.5208 4019.038 4019.038 
05/04/88 0.0161 0.0092 1.1397 5.7054 10.600 10.6000 3615.399 3615.399 
08/04/88 0.0132 0.0025 1.2346 4.1006 7.230 7.2310 1286.652 1286.652 
19/04/88 0.0131 0.0136 1.0212 4.1592 9.630 9.6300 3504.550 3504.550 
30/04/88 0.0319 0.0050 1.4362 7.5800 5.360 5.3609 887.390 887.390 
06/05/88 0.0058 0.0008 2.3822 3.1465 7.820 7.8190 898.472 898.472 
13/07/88 0.0040 0.0077 1.0785 4.4710 0.450 0.4460 40.732 40.732 
16/07/88 0.0021 0.0440 1.1282 4.6012 0.220 0.2190 83.564 83.564 
25/07/88 0.0065 0.0089 2.8179 7.2435 0.030 0.0300 0.494 0.494 
14/01/89 0.0121 0.0048 1.7430 5.4746 0.010 0.0100 0.042 0.042 
01/03/89 0.0127 0.0032 1.4585 2.9535 6.750 6.7500 918.502 918.502 
27/03/89 0.0143 0.0991 1.5093 1.8920 0.440 0.4400 527.504 527.504 
05/04/89 0.0014 0.0007 1.1388 3.4633 0.310 0.3100 2.460 2.460 
21/04/89 0.0004 0.0076 1.3151 6.2437 3.750 3.7500 674.211 674.211 
04/05/89 0.0047 0.0332 1.5624 4.0370 0.370 0.3697 128.991 128.991 
09/05/89 0.0075 0.0106 1.0601 2.8706 4.790 4.7900 1186.172 1186.172 
11/05/89 0.0019 0.0164 2.1559 4.3085 0.580 0.5801 167.674 167.674 
03/07/89 0.0048 0.0014 1.2053 5.5358 0.070 0.0700 0.395 0.395 
08/02/90 0.0414 0.0024 1.3464 6.9744 0.130 0.1300 1.768 1.768 
10/02/90 0.0004 0.0023  1.1543 6.2507 5.090 5.0900 404.357 404.357 
28/04/90 0.0023 0.0015 1.2081 7.5355 0.090 0.0900 0.572 0.572 
28/05/90 0.0067 0.0046 1.9485 7.1202 5.170 5.1700 793.946 793.946 
06/07/90 0.0036 0.0107 2.1006 7.2209 0.010 0.0060 0.057 0.057 
19/10/90 0.0034 0.0029 1.1438 1.1570 10.160 10.1570 1443.650 1443.650 
18/05/91 0.0196 0.0085 1.4907 5.8172 0.560 0.5600 54.402 54.402 
19/05/91 0.0045 0.0021 1.1163 8.0175 4.060 4.0597 245.539 245.539 

 

 

Fig. 2 Scatter plot of errors as ratios of observed and calculated 
sediment yield. 

 

 
Fig. 3 Observed and simulated sediment yield using the mean erosion 

parameters. 
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Table 3. Main statistics for the erosion parameters a, KR and KI 
All Events Events with Eo > 100 kg 

Statistics a 
(kg m2/s) 

KR 

(kg m/N1.5 s) 
KI × 108 

(kg s/m4) 
a 

(kg m2/s) 
KR 

(kg m/N1.5 s) 
KI × 108 

(kg s/m4) 
Arithmetic mean 0.0441 1.4594 4.4533 0.0147 1.3666 4.3619 
Median 0.0077 1.2749 4.3898 0.0092 1.1520 4.1299 
Harmonic mean 0.0041 1.3529 1.6491 0.0047 1.2852 2.4433 
Geometric mean 0.0089 1.4006 3.4756 0.0082 1.3219 3.5112 
Range 0.8905 1.7967 7.9175 0.0983 1.3610 7.4455 
First quartile 0.0032 1.1309 2.7986 0.0034 1.0991 2.8744 
Third quartile 0.0159 1.6475 6.4810 0.0159 1.4966 6.2490 
Interquartile range 0.0127 0.5167 3.6824 0.0125 0.3975 3.3745 
Median abs. deviation 0.0615 0.3563 2.0059 0.0118 0.3080 2.0033 
Variance 0.0221 0.2145 5.4396 0.0004 0.1530 5.5943 
Standard deviation 0.1485 0.4632 2.3323 0.0211 0.3912 2.3652 
Coef. of variation 3.3681 0.3174 0.5237 1.4378 0.2863 0.5422 
Skewness 5.4747 1.4529 –0.1968 3.4814 1.4214 –0.0487 
Kurtosis 31.5038 1.5203 –1.1971 13.7588 1.1291 –1.2379 
Excess kurtosis 28.5038 –1.4797 –4.1971 10.7588 –1.8709 –4.2379 

 

CONCLUSIONS 

A physically-based erosion model was used to simulate 
the runoff and sediment yield form a micro-basin in a 
semiarid region of Brazil. The conclusions are as 
follows: (1) the physically-based erosion model was 
shown to be useful for simulation in small areas; (2) the 
CHC algorithm was proved to be a robust optimization 
technique; (3) the soil moisture-tension parameter Ns 
depends also on the initial moisture content then it 
should be different for each rainfall event, (4) the 
channel erosion parameter a, the soil detachability 
factor KR, and sediment entrainment parameter by 
rainfall impact KI are obtained as constant for almost all 
rainfall events in the experimental basin. Although the 
mean parameter values using all events could be used is 
further studies, the mean values obtained using the 
larger event data (Eo > 100 kg) seems to be more 
appropriate since the observed data are more accurate 
than the smallest ones. Thus, the values a = 
0.0147 kg m²/s, KR = 1.3666 kg m/N1.5 and KI = 
4.3619 × 108 kg s/m4 should be used as the mean 
parameters for the studied region. 

 
 

 
Fig. 4 Scatter plot of errors as ratios of observed sediment yield and 

mean relative error. 

 
Acknowledgment The writers wish to thank Dr V. 
Lopes of Texas State University (US) for providing the 
WESP model and to the UFCG (Federal University of 
Campina Grande, Brazil), SUDENE (Brazil) and IRD 
(Institut de Recherche pour le Développement, France) 
for the field data. The financial support provided by 
CNPq (National Council for Scientific and 
Technological Development, Brazil) is gratefully 
acknowledged. 

 
REFERENCES 
 
Brown, C., Liebovitch, L.S. & Glendon, R. (2007) Lévy flights in 

Dobe Ju/’hoansi foraging patterns. Human Ecol. 35(129138). 
Civicioglu, P. & Besdok, E. (2011) A conceptual  comparison of the 

Cuckoo-search, particle swarm optimization, differential 
evolution and artificial bee colony algorithms, Artif. Intell. Rev., 
doi: 10.1007/s10462-011-9276-0. 

Croley, T.E. (1982) Unsteady overland sedimentation. J. Hydrol., 
56(1982), 325346. 

Davis, S.S. (1978) Deposition of nonuniform sediment by overland 
flow on concave slopes. MSc Thesis, Purdue University, West 
Lafayette, IN, p. 137. 

Einstein, H.A. (1968) Deposition of suspended particles in a gravel 
bed. J. Hydraul. Div. ASCE, 94(HY5), 11971205. 

Foster, G.R. (1982) Modeling the erosion process. In: C.T. Haan, 
H.P. Johnson, & D.L. Brakensiek (editors), Hydrologic modeling 
of small watersheds, Am. Soc. Agr. Eng., 295380. 

Green, W.H. & Ampt, G.A. (1911) Studies on soil physics, I. The 
flow of air and water through soils. J. Agr. Sci., 4(1), 124. 

Gutowski, M. (2001) Lévy flights as an underlying  mechanism for 
global optimization algorithms, arXiv:math-ph/0106003v1[4 Jun 
2001]. http://arxiv.org/abs/math-ph/0106003v1. 

Krüger, O., Sorenson, M.D. & Davies, N.B. (2009) Does 
coevolution promote species richness in parasitic cuckoos? Proc. 
R. Soc. B, 276, 38713879. 

Lane, L.J. & Shirley, E.D. (1985) Erosion and sediment yield 
equations: solutions for overland flow. Paper presented at the 
Workshop on USLE Replacement, Nat. Soil Erosion Lab., West 
Lafayette, IN, p. 22. 



Santos, Freire and Mishra 

Journal of Urban and Environmental Engineering (JUEE), v.6, n.2, p. 123-131, 2012 

131 

Lopes, V.L., & Lane, L.J. (1988) Modeling sedimentation processes 
in small watersheds. In: Sediment Budgets. IAHS Publ. 174, 497–
508. 

Mehta, A.J. (1983) Characterization tests for cohesive sediments. In: 
H. T. Shen (editor), Proc. Conf. on Frontiers in Hydraul. Engng. 
(ed. By H.T. Shen), 7984. ASCE/MIT, Cambridge, Mass., USA. 

Mishra, S.K. (2006) Some new test functions for global optimization 
and performance of repulsive particle swarm method.  Available 
at SSRN: http://ssrn.com/abstract=926132. 

Fuches Viswanathan, G.M., Afanasyev, V., Buldyrev, S.V., Murphy, 
E.J., Prince, P.A., & Stanley, H.E. (1996) Lévy flight search 
patterns of wandering Albatrosses, Nature, 381, 413–415.  

Mishra, S.K. (2012) Global optimization of some difficult 
benchmark functions by cuckoo-host co-evolution meta-
heuristics. Available at SSRN: http://ssrn.com/abstract=2128079. 

Pavlyukevich, I. (2007) Lévy flights, non-local search and simulated 
annealing, J. Computational Physics, 226, 18301844. 

Rajabioun, R. (2011) Cuckoo optimization algorithm, Applied Soft. 
Computing, 11, 5508–5518. 

Rothstein, S.I. (1990) A model system for coevolution: avian brood 
parasitism, Ann. Rev. Ecol. Syst. 21, 481–508. 

Santos, C.A.G., Freire, P.K.M.M., & Arruda, P.M. (2012) 
Application of a simulated annealing optimization to a physically-
based erosion model. Water Sci. and Technology, 66(10), 
20992108. doi: 10.2166/wst.2012.426. 

Santos, C.A.G., Freire, P.K.M.M., Mishra, S.K. & Soares Júnior, A. 
(2011) Application of a particle swarm optimization to the tank 
model. IAHS Publ. 347, 114–120. 

Santos, C.A.G., Freire, P.K.M.M., Silva, R.M., Arruda, P.M. & 
Mishra, S.K. (2011) Influence of the catchment discretization on 
the optimization of runoff-erosion modeling. J. Urban Environ. 
Engng, 5(2), 91–102. doi: 10.4090/juee.2011.v5n2.091102. 

Santos, C.A.G., Srinivasan, V.S., Suzuki, K. & Watanabe, M. (2003) 
Application of an optimization technique to a physically based 
erosion model. Hydrol. Process. 17(5), 989–1003. doi: 
10.1002/hyp.1176 

Santos, C.A.G., Suzuki, K., Watanabe, M. & Srinivasan, V.S. (1994) 
Optimization of coefficients in runoff-erosion modeling by 
Standardized Powell method, J. Hydrosci. and Hydraul. Engng, 
12(1), 67–78. 

Viswanathan, G.M., Bartumeus, F., Buldyrev, S.V., Catalan, J., 
Fulco, U.L., Havlin, S., da Luz, M.G.E., Lyra, M.L., Raposo, 
E.P., & Stanley, H.E. (2002) Lévy flight random searches in 
biological phenomena, Physica - A, 314, 208–213. 

Viswanathan, G.M., Buldyrev, S.V., Havlin, S., da Luz, M.G.E., 
Raposo, E.P., & Stanley, H.E. (1999) Optimizing the success of 
random searches, Nature, 401, 911–914. 

Yang, X.S. & Deb, S. (2009) Cuckoo search via Lévy flights, Proc. 
World Congress on Nature & Biologically Inspired Computing 
(NaBIC 2009, India), IEEE Publications, 210–214.  

Yang, X.S. & Deb, S. (2010) Engineering optimisation by cuckoo 
search, Int.  J. Math. Modell. and Numerical Optimisation, 1(4): 
330–343. doi: 10.1504/IJMMNO.2010.035430. 

 


