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Abstract: The existence of long and reliable streamflow data records is essential to establishing 

strategies for the operation of water resources systems. In areas where streamflow data 
records are limited or present missing values, rainfall-runoff models are typically used 
for reconstruction and/or extension of river flow series. The main objective of this 
paper is to verify the application of Kohonen Neural Networks (KNN) for estimating 
streamflows in Piancó River. The Piancó River basin is located in the Brazilian 
semiarid region, an area devoid of hydrometeorological data and characterized by 
recurrent periods of water scarcity. The KNN are unsupervised neural networks that 
cluster data into groups according to their similarities. Such models are able to classify 
data vectors even when there are missing values in some of its components, a very 
common situation in rainfall-runoff modeling. Twenty two years of rainfall and 
streamflow monthly data were used in order to calibrate and test the proposed model. 
Statistical indexes were chose as criteria for evaluating the performance of the KNN 
model under four different scenarios of input data. The results show that the proposed 
model was able to provide reliable estimations even when there were missing values in 
the input data set. 
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INTRODUCTION 

The northeast region of Brazil is characterized by high 
rates of evaporation and irregular and intense rainfall 
through space and time. Such hydrological conditions, 
combined with the inadequate management of river 
basins, contribute to the occurrence of various types of 
problems such as alternating episodes of floods and 
droughts, and the entrainment of sediment into the 
riverbeds, reducing the ability of the water bodies and 
affecting the quality of its waters (Farias et al., 2010; 
Vanmaercke et al., 2010; Silva et al., 2013). The need 
for a development that is compatible with the reality of 
the Brazilian semiarid hydrology has encouraged the 
study of strategies for a better management of existing 
water systems, both in terms of quality and quantity. 
However, the difficulty in obtaining long and reliable 
streamflow series has hampered the establishment of 
superior rules for the operation of water systems. 

In places where the data of flows are limited or 
flawed, processes like rainfall-runoff should be 
investigated for the reconstruction and/or the extension 
of the series of flows. Over the years, several models 
have been developed with the intention to understand 
the processes of rainfall-runoff transformation in river 
basins, such as Stanford Watershed Model IV 
(Crawford & Lindsley, 1966), SSARR – Streamflow 
Syntesis and Reservoir Regulation (US Army Engineer 
Division, 1972) and SMAP – Soil Moisture Accounting 
Model (Lopes et al., 1982). More recently, models 
based on artificial neural networks have been applied to 
the rainfall-runoff transformation, as shown in the work 
of Coulibaly et al. (2001), Jeong & Kim (2005), Farias 
et al. (2007), Wu & Chau (2011) and Santos et al. (2012 
a,b). According to Haykin (1999) and Farias et al. 
(2010), artificial neural networks are mathematical 
models, inspired by the human nervous system, capable 
of detecting complex relationships between input and 
output variables. 

This paper has as main objective the development 
and the verification of the implementation of a monthly 
rainfall-runoff model based on Kohonen Neural 
Networks (KNN) in order to estimate flows in the 
Piancó River, which is an intermittent river that is 
located in the Brazilian semiarid region.  

The KNN are unsupervised neural networks that 
group data into classes according to their similarities 
through competitive learning (Kohonen, 1982; Haykin, 
1999; Silva et al., 2010). Also known as self-organizing 
maps, the KNN were proposed by Kohonen (1982) and 
have mostly been applied in pattern classification and 
data grouping. One of the main advantages of KNN is 
the ability to reduce a set of multidimensional data to a 
two-dimensional array of features which can be used for 
analysis and prediction purposes (Silva et al., 2010; 

Adeloye et al., 2011; Santos & Silva, 2013). The studies 
of Garcia & González (2004) and Adeloye et al. (2011) 
are examples of the few applications of KNN models in 
the area of water resources. 

 
CASE STUDY 

The watershed of the Piancó River is located in the 
southwest region of the state of Paraíba, northeastern 
Brazil. With a drainage area of 9228 km², it has 
semiarid climate and average annual values of 
precipitation and temperature around 821 mm and 24ºC, 
respectively. In this basin, the largest water reserve of 
the state, is located the system Coremas–Mãe d’Água. 
The affluent outflows to the system come from three 
major tributaries: Aguiar Creek, Emas Creek and Piancó 
River. The flows of the tributary Piancó are measured at 
the Piancó stream gauge station, which has a drainage 
area of 4170 km². The data collection was done in eight 
rain gauge stations and in one stream gauge station 
located in the basin of the Piancó River. Details of the 
studied stations are shown in Fig. 1 and Table 1. The 
data has been obtained on the website of the National 
Water Agency (Agência Nacional de Águas – ANA, 
2010). The period of analysis, knowingly chosen for 
presenting more complete information, comprises 
monthly data from January 1963 to December 1984, 
totaling 22 years of observations. 

 
 Fig. 1 Location of the rain and stream studied gauge stations in the 

Piancó River basin. 
 

Table 1. Gauges that were employed in the present study 
Gauge code Gauge name Type City 
737006 (P1) Piancó Rainfall Piancó 
738020 (P2) Conceição Rainfall Conceição 
738015 (P3) Manaíra Rainfall Manaíra 
738013 (P4) Princesa Isabel Rainfall Princesa Isabel 
738019 (P5) Santana dos Garrotes Rainfall Santana dos Garrotes 
738012 (P6) Boa Ventura Rainfall Boa Ventura 
738014 (P7) Nova Olinda Rainfall Nova Olinda 
738018 (P8) Ibiara Rainfall Ibiara 

37340000 (Q) Piancó Stream Piancó 
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KNN MODEL 

Architecture and training 

The main objective of the Kohonen neural network 
consists of clustering vectors with similar characteristics 
in the same class (winner neuron) or similar classes 
(neighboring neurons). 

The architectures of KNN contain a multi-
dimensional input layer and an output layer which is 
either typically one-dimensional or two-dimensional. In 
the output layer, also known as competitive layer, the 
neurons compete among themselves and only one of 
them is considered the winner or, in simplified form, the 
class most suitable for a given input vector x. In these 
networks, each element of the input vector is connected 
to all the elements of the output layer. The strength of 
the connections is measured through weight wij between 
the input neurons j and the neurons of the output layer i. 

During the training of the KNN model, the Euclidean 
distances DIi between the input vector and the weights 
attached to each of the output neurons are calculated as 
shown by Eq. (1). 

  . ..., ,2 ,1   to;
1

2 MiwxDI
J

j
ijji  



     (1) 

in which xj is the j-th component of the input vector x; J 
is the dimension of the input vector x; and M is the total 
number of neurons in the output layer. 

 The output neuron i that has the smallest 
Euclidean distance when compared to the input vector is 
considered the winner neuron. The weights connected to 
this neuron i* and the neurons within a certain 
neighborhood radius Vi* are then updated by the rule of 
Kohonen (Beale et al., 2012), as shown by Eq. (2). 

         . ..., 2, ,1 and    to; 11 * JjVinwnxnwnw
iijjijij    (2) 

in which α is the learning rate, and n is an index that 
represents the sequence of sample presentation to the 
network. 

The Kohonen rule forces the weights attached to the 
winner neuron and its neighbors to move in the 
direction of the input vector presented to the network, 
causing the Euclidean distance to become smaller and 
that these neurons learn to classify similar vectors. 

The presentation of input vectors to the network can 
also be done using the entire data set before any weight 
update. This form of presentation is known as batch 
mode. In this case, the search for the winner neuron is 
performed for each input vector and the weight vector is 
then moved to a specific position calculated by the 
average of input vectors for which the neuron was the 
winner or the winner’s neighbor. The weights tend to 
stabilize after multiple presentations of the set of input 
data. It is worth noting that the training of this neural 

network is of the unsupervised type since there are no 
desired outputs. 

For purposes of determining the neighborhood, the 
distances between the neurons of the output layer can be 
defined in several ways (Beale et al., 2012). Commonly, 
in a two-dimensional output layer, neurons are thought 
of as rectangular or hexagonal shapes and the distance 
are established by the number of steps between them. 
Figure 2 shows how the distances between hexagonal 
neurons are obtained for purposes of determining the 
neighborhood.  

The training takes place in two phases: ordering 
phase and tuning phase. In the first phase, training is 
limited by a given number of presentations of the data 
set and the radius of the neighborhood starts with a 
given distance that decreases to the unit value. This 
measure allows the weights of the neurons to organize 
themselves in the input space consistent with their 
positions. The tuning phase lasts the remaining number 
of presentations for the training defined. At this stage, 
the radius of the neighborhood is below unity, so that 
there is only update at the weight of the winner neuron. 
During the tuning phase, it is expected that the weights 
will modify themselves relatively evenly in the input 
space, while maintaining the topology defined in the 
ordering phase (Beale et al., 2012). 
 

Forecasting using the KNN model 

Once trained, the KNN model can be used as predictive 
tools. For this, one should consider the input vector with 
the absence of the variable to be provided through the 
following steps: 
(a) Calculate the Euclidean distances between the 

input vectors and weights attached to output 
neurons disregarding the element j to be provided. 
This can be done by including a Boolean variable 
mj, as shown by Eq. (3). The variable mj is used to 
include (mj = 1) or exclude (mj = 0) the 
contribution of a given element j of the input vector 
in the calculation of Euclidean distances; 

 

3 steps

1 ste
p

 
Fig. 2 Distances between neurons of a KNN model for the 

determination of the neighborhood. 
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(b) Determining the winner neuron based on the lowest 
Euclidean distance; 

(c) Using the weight of the winner neuron connected 
to the missing element j of the input vector as the 
prediction. 

  . ..., ,2 ,1   to;
1

2 MiwxmDI
J

j
ijjji  



    (3) 

 
APPLICATION AND RESULTS 

Application of the KNN model 

In this study, the vectors of the input layer have 18 
neurons representing the past and current flow, Q(t–1) 
and Q(t), and rain, P1(t–1), ..., P8(t–1), P1(t), ..., P8(t) 
monthly values. A two-dimensional output layer with 
hexagonal neurons was chosen. Based on the guidelines 
suggested by Garcia & González (2004), a grid of 9 × 9 
neurons was used, providing a total of 81 neurons. 
Figure 3 shows the structure of the KNN model of this 
paper and an example with a winner neuron and its 
neighbors. 

The input data have been properly scaled to improve 
efficiency in the KNN model training. The scheduling 
process consisted of normalizing the data so that the 
average would be zero and the unit standard deviation 
(Beale et al., 2012). The model training took place in 
batch mode, and in order to ensure a consistent learning, 
the dataset has been submitted 200 times to the KNN 
model. In the ordering phase, it was opted for 100 
presentations of the dataset and an initial neighborhood 
radius equal to three steps. The tuning phase included 
the 100 remaining presentations. The KNN model was 
implemented in MATLAB R2012a by using the Neural 
Network Toolbox (Beale et al., 2012). 

The data used for training and testing the KNN 
model comprise the periods of 1963–1980 and 1981–
1984, respectively. 

 

 
Fig. 3 Structure of KNN model and example with a winner neuron 

and its neighbors. 
 

Detection of similarities 

The detection of the similarities between the variables 
involved in this modeling can be visually performed 
through the plans of the components shown in Fig. 4. 
Those plans or maps represent the weights associated 
with each input variable. In order to facilitate the 
interpretation of the results, a color scale was displayed 
with the original dimensions of the weights, which are 
actually the values of the variables under study for 
different neurons or classes. The highest values 
correspond to yellow zones, and the smallest to the 
zones in black. 

Correlations may be identified through color 
gradients on each plane component. Two variables with 
parallel gradients show a direct correlation while 
antiparallel gradients show an inverse correlation 
(Garcia & González, 2004). The analysis of Fig. 4 
allows the extraction of different information. 

When analyzing the generated maps of rain data 
from the eight rain gauges, considering the same time 
period, it is found that low and high rainfall values were 
classified into similar categories for all the positions 
studied. Based on this result, it is understood that it is 
reasonable to use information from neighboring rain 
gauges for filling gaps in the series of rainfall in the 
region studied. 

When comparing the flows with average (red cells) 
and high (yellow cells) magnitudes, it is clear that the 
map of Q(t) has little similarity with the map of Q(t–1). 
The map of Q(t) has presented the higher flow rates at 
the bottom right. The investigation of maps focusing on 
a comparison of the flow Q(t) with rainfall in the same 
period of time suggests that the flow data are strongly 
correlated with rainfall for the most rain gauges studied. 
Despite the lesser extent, the flow rates were also 
reasonably correlated with rainfall in the previous 
month. This is evidenced by the identification that the 
regions with low (black cells), medium and high flows 
have similar colors in most plans of rain at t–1. 

 
Rainfall-runoff modeling  

The performance evaluation of the KNN model for 
estimating the flow rates was based on the following 
indexes: correlation (R), relative bias (RB) and Nash-
Sutcliffe efficiency (NASH). The correlation measures 
the degree of linear dependence between the predictions 
and the observed values of flow, actually expressing a 
potential value of good fit. The relative bias, in turn, 
shows that the streamflow forecasting system has a 
tendency to underestimate or overestimate the observed 
flow. The NASH efficiency index, which can vary 
between –∞ and 1, is traditionally used to express 
adhesion between simulated and observed flow rates. 


1
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This index considers both the systematic errors and the 
random errors, indicating that the fit is even better as its 
value is close to the unit. High correlation values do not 
mean, by itself, predictions with high accuracy. For 
example, a system with a very high bias, even if 
correlation is equal to the unit (r = 1), will give 
streamflow forecasts of low precision, although it is 
possible to remove this bias by statistic models. A 
perfect forecast system would have r = 1 and RB = 0. 
The equations for calculating these indexes can be 
found in Lettenmaier & Wood (1993). 

Figure 5 shows a comparison between the monthly 
flow rate estimates obtained with the KNN model, 
considering the steps described in section 3.2, and the 
observed flow rate in the stream gauge investigated 
during the period of model training. 

 
 

 
Fig. 5 Comparison between the monthly flow rates obtained with the 

KNN model and the observed values at the Piancó streamflow 
station during the 18 years of the training period (1963–1980). 

Table 2. Input data for estimating flow rates by using the KNN 
model for four simulations 

Simulation Input data 
SIM #1 P1(t–1), ..., P8(t–1), P1(t), ..., P8(t) and Q(t–1) 
SIM #2 P1(t–1), ..., P8(t–1), P1(t), ..., P8(t) 
SIM #3 P1(t–1), ..., P8(t–1) and Q(t–1) 
SIM #4 P1(t), ..., P8(t) and Q(t–1) 

 
The correlation, relative bias and NASH results show 

that the KNN model could classify with good quality 
the flow rates of the training dataset. The KNN model 
was also evaluated for a period of tests represented by a 
series of data fully independent from those used for 
training the model. For this, four sets of input variables 
for estimating flow rates in the Piancó River were 
chosen and tested, as shown in Table 2. 

Figure 6 shows the results of estimation of the flow 
rates for all simulations. The simulation SIM #1 shows 
that the estimates of the KNN model and the observed 
values have high correlation and a fairly low value of 
relative bias. The value of NASH was also high, 
indicating that the monthly flow rate estimates hold 
good quality. The indexes obtained for simulation 
SIM #2, in which some input variables have been 
deleted, show that the KNN model is able to produce 
reliable estimates even when there are failures in the 
input data. These results are justified by the powerful 
classification capabilities of the networks KNN, even in 
cases where some of the elements of the input vector are 
not present (Beale et al., 2012). 

Also analyzing the flow rates estimated by the 
simulation SIM #2, it is observed that the removal of the 
past flow from the set of input data did not impair the 
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Fig. 4 Plans of the components obtained by the KNN model for rainfall data P (mm) and flow Q (m³/s) in the Piancó River basin. 
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performance of the model. These results confirm the 
analysis performed for the detection of similarities, in 
which the weak relationship among the streamflows 
Q(t) and Q(t–1) was verified. On the other hand, the 
simulation SIM #3, which had no rain data for the 
current period, showed the least significant results, 
confirming the strong correlation identified by the maps 
of components between the rainfall P(t) and the 
streamflow Q(t) data. The indexes obtained from the 
SIM #4, which did not contain rainfall data in P(t1), 
outperformed the SIM #3, which in turn suppressed the 
rainfall data in P(t). This suggests that the rainfall data 
P(t) have more significant correlations with the 
streamflow Q(t) than the rainfall P(t–1). 
 
CONCLUSION 

This paper presented a model of Kohonen Neural 
Networks (KNN) for detecting similarities between 
monthly rainfall and runoff data, and it verified its 
applicability for estimating the monthly streamflow at a 
stream gauge on the Piancó River, which is located in 
the semiarid region of Paraíba state, Brazil. 

The developed model was evaluated through a 
comparative study relating flow rates estimated by the 

KNN model with the data observed in the region. This 
comparison, by using a testing period regardless of the 
data used in the model training, has shown that the 
KNN model had a good performance for estimating the 
monthly flow rates. 

The plans of the components generated by the KNN 
model were shown to be powerful analytical tools by 
allowing the visual identification of similarities between 
the variables involved in modeling. Simulations using 
four different configurations of inputs also indicated 
that the KNN model is able to produce reliable 
estimates even when there are faults in the input data, 
which is a common situation when dealing with 
hydrometeorological data. 

The good results obtained for the stream gauge in the 
Piancó River suggest that this type of model can be used 
to reconstruct and/or extend streamflow series, 
especially in places where hydrometeorological data are 
limited or at fault. Further studies together with 
physically-based runoff-erosion models (e.g., Santos et 
al., 1994, 2003, 2011a b, 2012a b, 2013; Zhang et al., 
2013) seems to be a promising tool for dealing with 
erosion issues, as well as the use of wavelet transform 
(e.g., Santos & Morais, 2013; Santos & Silva, 2013). 
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Fig. 6 Comparison between the monthly flow rate estimates obtained with the KNN model and the observed values at the Piancó stream

gauge for various configurations of input data during the four years of the test period (1981–1984). 
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