

Journal of Urban and Environmental Engineering, v.1, n.1 (2007) 10–17

ISSN 1982-3932 doi: 10.4090/juee.2007.v1n1.010017 Journal of Urban and Environmental Engineering

www.journal-uee.org

COMPARISON OF THREE MODELS TO PREDICT ANNUAL SEDIMENT YIELD IN CARONI RIVER BASIN, VENEZUELA

Edilberto Guevara-Pérez* and Adriana M. Márquez

School of Civil Engineering, Carabobo University, Venezuela

Received 25 Feb 2007; received in revised form 25 March 2007; accepted 1 May 2007

Abstract: Caroní River Basin is located in the south-eastern part of Venezuela; with an area of 92.000 km², 40% of which belongs to the main affluent, the Paragua River. Caroní basin is the source of 66% of energy of the country. About 85% of the hydro electrical energy is generated in Guri reservoir located in the lower part of the watershed. To take provisions to avoid the reservoir silting it is very important the study of sediment yield of the basin. In this paper result of three empirical sediment yield models: Langbein-Schumm, Universal Soil Loss Equation-USLE and Poesen, are compared with observed data from five sub basins with records of twenty to thirty years. Men values of sediment yield for low, middle and upper Caroní are of 27, 76, 17 t/km²-year, respectively; and 46 and 78 t/km²-year for low and upper Paragua sub basins are. Standard errors of estimates vary between 13 and 29 for Langbein-Schumm model; between 8 and 32 for USLE procedure; and between 9 and 79, for Poesen model. Sediment yield predictions by Langbein-Schumm model seem to the best in Caroní basin.

Keywords: sediment yield, soil erosion, soil loss, modeling of sediment yield

© 2007 Journal of Urban and Environmental Engineering (JUEE). All rights reserved.

^{*} Correspondence to: Edilberto Guevara-Pérez. Telephone-Fax: 0058-0241-8420858. E-mail: eguevara@uc.edu.ve.

INTRODUCTION

Sediment delivery to river channels and reservoirs is the most problematic off-site consequence of soil erosion in catchments (Lenhart *et al.*, 2005). The input of sediment by erosion processes into water bodies results in high sediment deposition rates and frequent dredging operations (Verstraeten & Poesen, 1999).

Erosion models are technically capable of calculating the frequency and quantity of runoff and soil loss; nevertheless, arising question is whether the predictions are or not good enough (Jetten, 2003). Variability, and uncertainty associated with input parameter values, are probably the most important reasons why more complex models, in general, do not perform better than easy lumped regression-based models.

More complex models with better process descriptions should, in principle, be capable of better output predictions; however, they also require more input data, increasing often the magnitude of unknown uncertainty and associated error, which will be propagated through the model calculations deteriorating the quality of final results.

Comparison studies of Zhang *et al.* (1996) with those of Rise *et al.* (1993), Bathurst et al (1998), Brochot and Meunier (1995), suggest that additional error resulting from introducing additional parameters often outweighs the potential improvement of prediction due to a better process description.

This investigation aims to compare by means of standard error of the estimates, sediment yield estimated by three empirical lumped models: Langbein-Schumm, Universal Soil Loss Equation (USLE) and Poesen, with sediment yield measured in five sub basins of Caroní River, Venezuela.

Caroní River is located in the South–eastern part of the country. Total area is of about 92,000 km². Its main affluent, the Paragua River, comprises 40% of this area. Total basin was divided for this study into five sub basins: upper, middle and low Caroni, with 27, 19 and 24% of the area, respectively; and upper and low Paragua, with 24 and 16% of the area, respectively. Sediments yield is estimated at the outlet of each sub basin

SEDIMENTS YIELD MODELS

Sediment Rating Curve Method

Sedimentation Curves are used when there are enough sediment concentration data from samples taken at hydrometric gauging stations at the same time that flows are measured. The relationship between sediment yield, q_s and runoff rate, Q is normally represented in a logarithmic paper and adjusted mathematically to **Eq.** (1):

$$q_s = \frac{aQ^n}{A} \tag{1}$$

Where q_s is the sediment yield in t/km²-d; Q is the flow rate in m³/s; A is the area of the basin; *a*, *n*, are adjustment parameters of the model.

Langbein- Schumm Model

Langbein-Schumm (1958) proposed the model given in **Eq. (2)** to estimate suspended sediment yield in basins q_s as a function of effective precipitation P:

$$q_s = \frac{10P^{2.3}}{1 + 0.0007P^{3.33}} \tag{2}$$

Where, q_s is the specific annual sediment yield in ton/miles², P is effective annual precipitation in inches. Factor 10P^{2,3} describes erosive action of rainfall in absence of vegetation. Factor (1/1+0,0007P^{3,33}) represents the protective action of vegetation. This model supposes a maximum sediment yield at about 12 inches annual effective precipitation, preceding from a uniform yield from areas with more than 40 inches effective precipitation.

Universal Soil Loss Equation, USLE Model

The classical form of USLE-Model as presented by Wischmeier and Smith (1978) is given in Eq. (3):

$$E = RK(LS)CP \tag{3}$$

Where, E is the soil loss due to surface erosion (t/hayear), R is the rainfall erosivity factor (MJ-mm)/(ha-hyear); K is the soil erodibility factor; L is the slope length factor, S is the slope steepness factor, C is the cover and management factor and P is the support conservation practice factor.

The estimation process of R requires continuous daily pluviographs over periods of various years. However, in the absence of available records, monthly or annual precipitation data can be used to develop regional relationships (Foster *et al.*, 1981; Bolline *et al.*, 1980; Bergsma, 1980; Hrissanthou, 2006). In this research **Eq. (4)** proposed by Agüero (1989) for La Paragua gauging station and adopted by EDELCA (2004) was used to estimate R.

$$R_i = -237.9 + 8.7P_i; R^2 = 0.978$$
⁽⁴⁾

Where, P_i is the mean precipitation for month i in mm. This expression combines the intensity and duration of rainfall. The resulting value of R is expressed in (MJmm)/(ha-h-year) and comes from the total sum of values obtained for every month, as given below:

$$R = \sum_{i=1}^{n=12} R_i; i = 1,...,12 \text{ months}$$
(5)

Factor E is actually not the same as sediment transport of the river, since part of the eroded soil loss is deposited down stream of erosion site in the basin hillslopes. To estimate the real sediment contribution it is frequently used the so called *delivery rate*, f, which represents the proportion between the among of sediment contributed to a specific place in the water course (sediment yield) and gross soil loss estimated as E by means of **Eq. (3).** In that way, sediment yield q_s , will be equal to the product of this factor f and E, as in **Eq. (6):**

$$q_s = fE \tag{6}$$

A number of methodologies have been proposed to predict sediment delivery rate. These include simple estimates by an areal relationship and a relief-length ratio. Also, the accounting of many on-site factors such as water available for overland flow; texture of eroded material; ground cover; slope shape, gradient and length; surface roughness; and additional site-specific factors have been recommended by US Forest Service (1980). Roelh (1962) proposed in **Eq. (7)** for delivery rate f as a function of area A:

$$f = 36A^{-0,20} \tag{7}$$

Where f is the delivery rate in percentage, A is the area of the basin in km^2 . There are several investigations that relate the delivery rate with the area; all of them show a great variability; however the general tendency indicates a strong effect of area on the delivery rate.

Poesen Model

Poesen (1985) has developed a procedure to estimate soil erosion based on soil characteristics; slope; and rainfall kinetic energy. Poesen model comprises the solution of **Eqs. (8)**, (9), (10) and (11), as follows:

$$q_{rs} = C(KE)r_s^{-1}\cos S \tag{8}$$

$$q_{s} = q_{rs} \left[0.301 senS + 0.019 D_{50}^{-0.22} \left(1 - e^{2.42 senS} \right) \right]$$
(9)

where q_{rs} is the mass of particles detached per unit area (kg./m²); C is a soil cover factor; KE is the rainfall kinetic energy (J/m²); r_s is the soil resistance to drop detachment (J/Kg.); S is the slope gradient, in degrees q_s is down slope splash transport (kg/m²) and D₅₀ is median particle diameter (m).

Rainfall kinetic energy, KE (J/m^2) , is given by Poesen (1985) as in Eq. (10):

$$KE = \beta P \tag{10}$$

where β is a factor proportional to the square of mean fall velocity of raindrops in J/m²-mm ($\beta = 12,5$ J/m² mm, given by Poesen), and P is the total rainfall amount in mm.

Resistance of soil material, r_s in J/kg is given by Poesen (1985) as:

$$r_s = 1,836.5 + 175.7 \ln D_{50}, \text{ for } 0.0001 \text{ m} < D_{50} < 0.0007 \text{ m}$$
 (11)

Poesen model for splash detachment is original developed for bare soils. For soil conditions with vegetative cover, is therefore necessary to include an additional factor: C, as USLE, to express the decrease of splash detachment due to vegetation. Rainfall kinetic energy, KE, is the same rainfall erosivity factor, R, of USLE, which is a function of rainfall energy and rainfall intensity. Soil resistance, r_s , corresponds to the topographic factor, LS, of USLE, which is a function of slope gradient and slope length.

Compared whit USLE, Poesen model attempts a more detailed consideration of rainfall erosion; e.g., splash detachment; up and down slope splash transport. However, correlations of influencing parameters on erosion remain empirical, as it is the case of USLE. Likewise USLE procedure, Poesen model also uses delivery rate to estimate transported sediment.

METODOLOGY

As mentioned above, Caroní river basin is located in the south-east region of Venezuela, with a geographical localization that extends between 3° 37' northern latitude (the most southern point in the border with Brazil at Sierra of Pacaraima) and 8° 21' (the junction to Orinoco river); and between 60° 35' western longitude (heads of Arabopó river in the upper Caroní) and 64° 37', see **Fig. (1).**

The main affluent of Caroní river is Paragua river, which extends almost parallel to Caroni from south to north until the junction, at "San Pedro de las Bocas" gauging station. About 60% of the area belongs to Caroní River and 40% to Paragua River. For this study, the whole basin is divided into five sub basins: upper Caroní (27% of the area), middle Caroní (19% of the area) and lower Caroní (14% of the area); upper Paragua (24% of the area) and lower Paragua (16% of the area). Available data of sediment yield are recorded at the outlet of each sub basin. Estimations of sediment yield using the proposed models refer to the same points of sub basin.

Regarding basin conditions, about 66% of the area is covered by any kind of forest; 15% of the area is covered by herbaceous vegetation; 12% of the area is covered by shrubby vegetal formations; about 4% of the area is occupied by Guri reservoir; remaining 3% is agriculture, grassland, urban, mining and hydroelectrically infrastructure.

Sediment Rating Curve Method

Basic information of sub basins needed to apply rating curves is given in Table 1.

Table 1. Available stations with records of suspended sediment in sub basin of Caroní river

		Sub	Aroo	%	Elay	Number		Number of	Minimum	Maximum
Stations	River	basin	km^2	of	(m)	of	Period	years of	Flow	Flor
		Uasin	KIII	area	(111)	measures		measures	(m^{3}/s)	(m^{3}/s)
Aripichi	Caroní	Upper	24,506.88	27	382	146	1982-1997	16	140	3,886
Arekuna	Caroní	Middle	17,433.63	19	345	106	1988-1998	10	217	8,430
Caruachi	Caroní	Low	13,159.66	14	49	97	1989-1995	6	2.488	9,167
Karun	Paragua	Upper	22,154.64	24	295	75	1987-1997	10	198	3,797
Auraima	Paragua	Low	14,914.27	16	270	51	1982-1995	13	137	5,599
W	hole Basin	l	92,169.08	100						

Results of EDELCA (2004) for sediment curve relations in Caroní basin are given in Table 2. With the exception of Karuachi gauging station, correlation coefficient for those relationships is bigger than 0, 77, high enough for the model to be considered as reliable to predict sediment yield in the basin.

Langbein-Schumm model

Table 3 gives basic information needed to apply Langbein-Schumm model. Effective rainfall was obtained by conversion of mean monthly flows for each gauging station.

USLE Model

USLE model was applied under the consideration of its empiric nature and the fact that this procedure was initially developed for agricultural parcels, even though it is widely used in many countries to estimate sediment yield. Hrissanthou, (1990; 2005) applied this model to a basin of 1500 km² in Central Europe; and to Kompsatos river basin in northwest of Greece with an area of 565 km². Results of annual values of sediment yield were found satisfactory compared with measured records.

In this research work, USLE factors C, K, and LS, were estimated based on the morpho-dynamic study of the basin made by COPLANARNH (1973) and adopted by EDELCA (2004) for its studies of Caroní basin. Annual average erosive factor R for each sub basin was calculated by means of **Eq. (4)** using monthly rainfall data from EDELCA's hydrometeorological network. Monthly rainfall records are given in Table 3. Morpho-dynamic information and following correspondence between morpho-dynamic classes and extension of sub basin are given in Table 4.

- 1. Inactive stable;
- 2. Inactive almost stable, in balance;
- 3. Inactive almost stable, in precarious balance;
- 4. Active, with moderate laminar erosion, low potential;
- 5. Active, with moderate laminar erosion, middle potential;

- 6. Active, with moderate laminar erosion, high potential;
- 7. Active, with moderate laminar erosion to strong, low potential;
- 8. Active, with moderate laminar erosion to strong, middle potential;
- 9. Active, with moderate laminar erosion to strong, high potential.

Table 2. Sediment relation curves for four stations of Caroní basin to estimate sediment yield

Stations	River	Model	Correlation (R)
Arekuna	Caroní	$Q_s = 0.5289 Q^{0.7227}$	0.88
Aripichi	Caroní	$Q_s = 0.2064 Q^{1.3026}$	0.77
Auraima	Paragua	$Q_s = 0.3065 Q^{1.2019}$	0.86
Caruachi	Caroní	$Q_s = 135.93Q^{0.3875}$	0.01
Karen	Paragua	$Q_s = 0.18Q^{1.2968}$	0.82

Fig. 1 Location of sub basins of Caroní River

Morpho-	Low	Middle	Upper	Low	Upper		Slope		
dynamics	Caroni	Caroni	Caroni	Paragua	Paragua	CP*	(S) %	L**	K Factor
class	area (%)		(3) %						
1	4.1	23.6	13.3	4.0	26.9	0.001-0.006	<4	1.1	< 0.005
2	6.2	21.8	18.5	54.2	26.2	0.1-1	<4	1.4	(0.045-0.06)
3	0.2	1.0	0.8	0.4	1.3	0.1-1	4-8	1.15	>0.6
4	6.1	0.7	15	0	0	0.02.0.08	1 9	16	(0.005-
4	0.4	0.7	1.5	0	0	0.02-0.08	4-0	1.0	0.015)
5	35.2	29.7	21.0	28.2	36.4	0.02-0.08	8-30	1.2	0.015-0.045
6	14.3	3.7	8.4	2.4	4.8	0.1-1	8-30	1.8	>0.6
7	0	0.1	2.0	0.2	0	0.001-0.006	30-60	2.2	< 0.005
8	2.0	16.0	27.8	0.5	27	0.02.0.08	>60	1.0	(0.005-
0	2.9	10.0	27.0	9.5	2.7	0.02-0.08	>00	1.9	0.015)
9	0	2.4	6.4	0.8	0	0.1-0.3	>60	2.4	(0.045-0.06)
Guri	28.1	0	0	0	0				
Reservoir	20.4	0	0	0	0				
Total	1 315 066	1 7/3 362	2 450 699	2 215 464	1 401 427				
Area ha)	1,515,900	1,745,505	2,430,088	2,213,404	1,491,427				

* Covering and protection factor (CP)

** Slope longitude factor (L)

Poesen Model

Poesen model was developed for small experimental parcels; however Hrissanthou, (2006) applied the model to a basin of 122, 5 km² in Cyprus, Greece finding satisfactory results. In this in this research study kinetic energy was calculated using rainfall data given in Table 3; results of these calculations are given in Table 5.

RESULTS

Estimated results of sediment yield for Caroní River sub basins applying Langbein-Schumm, USLE, and Poesen models are given in Tables 6 to 9. For comparison proposes recorded values are also presented in the same tables.

In Table 6 annual observed and calculated values of sediment yield for upper Caroní basin are compared. Estimated mean values using Langbein-Schumm, USLE, and Poesen models are 97, 132 and 16 t/km²-year, respectively, while observed mean is only 27 t/km²-year; corresponding standard errors of estimates are 77, 109 and 13 t/km²-year. Results obtaines by Langbein-Schumm model are highly influenced by lower effective rainfall of the sub basin (see Table 3). USLE model results are influenced by six morphodynamic classes associated with the estimation of critical values of involved factors of the model.

Results obtained by Poesen model may be affected by soil detached particles mass without consideration of particles mass transported by runoff; nevertheless the results of this model adjust best to observation values. High erosion values are due to easy conditions of soil erodability in the upper Caroni basin, which belongs to category eight of morpho-dynamic balance classification.

In Table 7 annual observed and calculated values of sediment yield for middle Caroní sub basin are

compared. Estimated mean values by Langbein-Schumm, USLE, and Poesen models are 79, 64 and 38 t/km^2 -year, respectively; while observed mean is 76 t/km^2 -year. Standard errors of estimates are 15, 17 and 40 t/km^2 -year. For this sub- basin, Langbein- Schumm model results in the best prediction. Erosion rate in this sub-basin is smaller than for upper Caroni, which could be due to the resistance of soils as they belong to type five (5) of the morpho-dynamic balance classification.

In Table 8 annual observed and calculated values of sediment yield in the upper Paragua basin are presented. Estimated mean values by Langbein-Schumm; USLE and Poesen models are; 54, 42 and 9 t/km²-year, respectively; while observed mean is of 46 t/km²-year. Standard errors of estimates are; 13, 8 and 38 t/km²-year. In this basin, Langbein-Schumm and USLE models result in the best prediction. Erosion rates in the upper Paragua basin are higher than in Caroní basin.

In Table 9 annual observed and calculated values of sediment yield for low Caroní basin are compared. Estimated mean values by Langbein-Schumm; USLE and Poesen models are: 7, 54 and 3 t/km²-year, respectively, while observed mean is only 17 t/km²-year. Standard errors of estimates are; 21, 45 and 23 t/km²-year. In this basin, results of Langbein- Schumm model fit the best to observed data. Erosion rates in this sub-basin are also low due the characteristics of the soil.

In Table 10 annual observed and calculated values of sediment yield in the lower Paragua basin are compared. Estimated mean values by Langbein-Schumm; USLE and Poesen models are; 54, 49 and 2 t/km²-year, respectively; observed mean is 78 t/km²-year. Standard errors of estimates are; 29, 32 and 79 t/km²-year. In this basin, Langbein-Schumm and USLE results fit the best to observed values. The variability of results in this subbasin is due to variety soil type as they belong to three different morpho-dynamic balanced classifications (1, 2

Table 5. Rainfall Kinetic Energy (KE) in J/m² for each sub basin of Caroni River to be used by Poesen model

Subbasin	Upper Caroni	Middle Caroni	Low Caroni	Upper Paragua	Low Paragua
Mean value	38,293.56	33,391.81	16,576.25	49,387.50	34,350.00
Deviation	5,817.53	3,612.61	1,729.75	5,220.67	4,718.61

and 5). The very low values resulting from the application of Poesen model are probably due to structure characteristic of the model which considers an erosion term and a term that reduces the erosion as vegetation cover increases.

Even if Langbein-Schumm model does not involve topographic and geologic factors, it is worth to mention that effective precipitation as input variable of this model agrees with the characteristics of vegetable covering existing in Caroní River basin: 66% forests, with herbaceous formations; 15% shrubby vegetable formations; and 12% mixed cover.

Estimated annual values of the sediment yield in all sub basins were relatively satisfactory, fitting Langbein-Schumm results better to observed values. Analyzing the structure of Langbein-Schumm model it is easy to realize that sediment yield increases with effective precipitation until a maximum amount of rainfall of 0 to 12 inchs; it diminishes for values between 12 and 45 inches; and remains almost constant for effective rainfall values over 45 inches.

Further more; there is a direct relationship between effective precipitation and vegetation cover, as follows: for 0 to 12 inches effective rainfall, shrubby vegetation cover in deserts areas; for 12 to 45 inches effective rainfall, grassland; and for effective rainfall values over 45 inches, forests cover (Langbein et al (1957). Values of effective rainfall are higher than 45 inches in every one of the sub basins used for the study. This is the reason why the results obtained by this model tend to the mean or to lower value (in Tables 6 to 10), assuming forest vegetative cover.

CONCLUSIONS

The research was carried out in the space unit conformed by sub basins Upper, Middle and Low Caroní River, as well as Upper and Low Paragua River. Historical records of monthly rainfall and runoff coming from EDELCA's hidrometeorological network were used.

Even if Langbein-Schumm model does not involve topographic and geologic factors, it is worth to mention that effective precipitation as input variable of this model agrees with the characteristics of vegetable covering existing in Caroní River basin: 66 forests, with herbaceous formations; 15% shrubby vegetable formations; and 12% mixed cover. This model fit to observed data in 80% of the cases.

Estimated annual values of the sediment yield in all sub basins were relatively satisfactory. Regarding the application of Langbein-Schumm model, values of effective precipitation in each sub basin of the Caroní are higher than 45 inches supposing that the model will predict sediment yield tending to the mean or smaller values as should correspond to an area with forest vegetative covering.

In spite of the empiric nature of the USLE and the fact that this equation was developed for small agricultural parcels, calculated annual values of sediment yield in three of five sub basins (60% of the cases): Middle Caroní, Upper and Low Paragua, were relatively satisfactory; however, standard deviation was higher than that of Langbein-Schumm method.

Results of Poesen model are the worst. This model was developed for small experimental parcels, and dos not fit well to Caroní basin conditions. Predictions by this model are consistently smaller compared to observed records. This anomaly could be explained by the fact that this method only considers transport of the particles removed by impact of the rain drop without taking into account transported particles by runoff.

According to the results of this research, it seems to be convenient for further applications to adapt Langbein-Schumm and Poesen models to local conditions of the sub basin involved in this study.

 Table 6. Comparison between annual observed and calculated values of sediment yield in the upper Caroní basin

Year	Observed	Langbein- Schumm	USLE	Poesen
-		$q_s(t/km^2-$	year)	
1980	26.02	88.95	140.27	13,76
1981	40.10	95.63	147.40	18,34
1982	23.63	67.69	135.31	16,99
1983	14.83	102.13	103.67	13,43
1984	31.25	148.22	161.77	19,96
1985	26.69	83.34	113.51	14,54
1986	23.01	93.90	108.23	13,94
1987	19.75	105.00	104.62	13,54
1988	32.88	118.97	96.81	12,64
1989	33.92	82.96	100.02	13,02
1990	29.40	75.36	162.74	20,07
1991	25.01	97.85	140.85	17,61
1992	13.28	159.43	106.04	13,69
1993	26.14	93.33	158.38	19,58
1994	25.94	95.05	139.80	17,49
1995	25.63	99.94	138.03	17,29
1996	31.06	82.81	154.62	19,16
1997	19.86	115.76	132.45	16,66
1998	34.16	78.45	153.89	19,07
1999	43.42	63.03	145.96	18,19
Mean	27.30	97.39	132.22	16,45
Standard error of estimates		77.26	109.57	13.09

Guevara-Pérez and Marquez

Table 7. Comparison between annual observed and calculated values of sediment yield in the middle Caroní basin

Year	Observed q_s (t/km ² -year)	Langbein-Schumm q _s (t/km ² -year)	USLE q_s (t/km ² -year)	POESEN $q_s(t/km^2-year)$
1966	72.49	71.75	84.48	13.33
1967	87.31	80.38	71.25	43.09
1968	79.60	67.89	53.03	33.49
1969	65.61	73.84	72.63	43.85
1970	83.09	87.98	63.73	39.34
1971	84.16	71.02	61.92	38.14
1972	79.77	70.20	47.96	30.50
1973	70.32	73.69	49.54	30.53
1974	66.03	82.63	51.05	32.53
1975	76.09	87.48	62.25	37.79
1976	84.19	76.93	54.54	34.35
1977	61.73	70.17	38.57	24.47
1978	58.71	92.97	57.25	34.95
1979	76.65	97.28	70.06	42.37
1980	75.77	76.41	77.42	45.82
1981	99.07	77.22	78.48	47.06
1982	70.91	60.52	63.17	39.01
1983	60.46	82.00	63.97	38.87
1984	80.80	94.74	62.76	37.90
1985	69.34	72.84	58.08	36.23
1986	68.54	83.69	66.85	40.23
1987	62.91	84.58	65.10	39.49
1988	79.70	91.40	77.51	45.93
1989	81.05	73.75	57.58	35.81
1990	87.28	72.64	74.12	44.95
1991	74.99	67.92	55.76	34.83
1992	52.17	77.95	77.83	46.71
1993	83.91	108.20	65.73	39.99
1994	81.52	70.39	60.47	36.93
1995	74.36	72.26	66.80	40.26
1996	87.13	78.55	75.13	45.46
1997	61.53	68.02	51.06	32.39
1998	81.77	93.25	74.07	44.21
1999	97.72	72.06	71.79	43.67
Mean	75.78	78.90	64.17	38.07
Sta	ndard error of estimates	14.96	17.30	39.81

Table 8. Comparison between annual observed and calculated values of sediment yield in upper Paragua basin

Year	Observed q_s (t/km ² -year)	Langbein-Schumm q _s (t/km ² -year)	USLE q_s (t/km ² -year)	POESEN q_s (t/km ² -year)
1980	41.84	52.48	43.95	9.62
1981	52.99	55.65	42.30	9.35
1982	46.34	45.40	46.79	10.26
1983	41.11	50.51	43.89	9.68
1984	50.01	55.87	42.53	9.40
1985	40.46	47.93	37.58	8.36
1986	44.18	57.35	44.11	9.68
1987	34.06	52.41	33.20	7.51
1988	38.46	65.56	38.90	8.67
1989	54.30	60.34	40.47	8.98
1990	51.75	43.86	47.42	10.39
1991	45.81	45.63	35.58	7.99
1992	27.60	52.18	40.95	9.05
1993	55.43	77.29	53.65	11.65
1994	55.74	43.56	47.11	10.27
1995	36.34	44.44	36.10	8.02
1996	52.97	63.06	40.49	8.99
1997	35.56	45.53	39.83	8.85
1998	49.22	62.16	45.89	10.08
1999	57.38	49.56	46.05	10.12
Mean	45.58	53.54	42.34	9.35
Stand	ard error of estimates	13.32	7.53	38.00

Guevara-Pérez and Marquez

Table 9. (Comparison	between annual	observed an	d calculated	values of	f sediment	vield in low	Caroní basin
------------	------------	----------------	-------------	--------------	-----------	------------	--------------	--------------

Year	Observed q_s (t/km ² -year)	Langbein-Schumm q _s (t/km ² -year)	USLE q_s (t/km ² -year)	POESEN q _s (t/km ² -year)
1958	12.57	8.64	63.69	2.51
1959	12.05	8.18	42.25	2.91
1960	12.34	6.71	39.72	2.23
1961	13.77	8.54	49.05	2.78
1962	12.07	7.10	35.98	2.23
1963	13.10	6.65	43.11	2.78
1964	13.76	9.15	31.71	2.13
1965	11.61	8.46	35.83	2.44
1966	12.65	6.90	46.78	2.82
1967	12.91	5.67	45.77	2.83
1968	14.78	6.90	53.66	3.22
1969	13.74	7.34	46.48	2.89
1970	13.53	6.15	54.94	3.28
1971	14.37	6.12	40.57	2.60
1972	14.53	6.05	66.12	3.86
1973	14.72	7.15	39.19	2.48
1974	13.07	7.57	32.74	2.32
1975	13.48	6.87	66.73	3.77
1976	13.58	5.58	62.08	3.66
1977	14.92	7.59	42.80	2.53
1978	12.99	8.35	57.72	3.32
1979	12.57	6.70	59.53	3.61
1980	13.75	6.46	79.50	4.28
1981	14.05	5.10	80.46	4.45
1982	15.33	6.60	60.81	3.58
1983	14.11	8.59	56.92	3.33
1984	12.71	6.66	59.80	3.45
1985	13.80	12.17	68.81	3.91
1986	11.45	8.46	68.87	3.86
1987	12.96	7.75	59.05	3.34
1988	13.49	6.48	69.19	3.81
1989	14.42	6.37	57.74	3.43
Mean	16.85	7.28	53.68	3.14
Stand	dard error of estimates	21.44	44.97	23.77

Table 10. Comparison between annual observed and calculated values of sediment yield in low Paragua basin

Year	Observed q_s (t/km ² -year)	Langbein-Schumm q _s (t/km ² -year)	USLE q_s (t/km ² -year)	POESEN q_s (t/km ² -year)
1980	75.47	54.37	62.49	2.06
1981	89.20	46.51	51.38	1.74
1982	79.76	51.23	42.15	1.47
1983	80.16	51.30	52.74	1.78
1984	78.81	52.09	40.75	1.40
1985	67.53	59.84	51.69	1.75
1986	73.93	54.62	41.85	1.45
1987	64.42	62.35	53.35	1.79
1988	65.77	61.89	46.06	1.55
1989	84.23	54.62	42.34	1.46
1990	86.91	62.35	51.73	1.75
1991	76.04	61.89	31.09	1.13
1992	58.81	48.29	54.06	1.80
1993	97.00	47.08	57.09	1.91
1994	92.28	54.07	44.90	1.53
1995	64.65	67.36	52.31	1.76
1996	85.34	43.15	54.40	1.82
1997	66.38	45.76	41.41	1.43
1998	82.40	62.67	57.54	1.91
1999	95.34	43.43	56.27	1.90
Mean	78.22	54.24	49.28	1.67
Stand	lard error of estimates	29.13	32.24	79.32

Acknowledgment: This research was founded by Council of Scientist and Humanistic Development of Carabobo University (Consejo de Desarrollo Científico y Humanístico de la Universidad de Carabobo).

REFERENCES

- Agüero, L. (1989) Determinación de riesgos de erosión hídrica y selección de alternativas de uso conservacionista de la tierra en la zona de La Paragua, Estado Bolívar. Tesis de Graduación. Universidad Central de Venezuela. 141 p.
- EDELCA (2004) Estudio Plan Maestro de la Cuenca del río Carona. Volumen 2. Tomo 2. EDELCA, Caracas. 27 p.
- Bathurst J. C., & Lukey, B. (1998) Modeling badlands erosion with SHETRAN at Draix, southeast France. Modeling Soil Erosion, Sediment Transport and Closely Related Hydrological Processes, Summer W, Klaghafer E, Zhang W (eds). IASH Publication n° 249. IASH: Wallingford, 129-136
- Bergsma, E. (1980) Provisional rain erositivity map of the Netherlands. In Assessment of Erosion. De Boodt & Gabriels eds, Wiley Chichester U. K. 125 p.
- Bolline, A., Laurant, A., Rosseau P., Panwels, J. M. & Gabriels, D. (1980) Provisional rain erositivity map of Belgium. In Assessment of Erosion. De Boodt and Gabriels eds, pp. 121–125, Wiley Chichester U. K.
- Brochot S. & Meunier, M. (1995) Erosion de badlands dans les Alpes du sud: synth'ese. In Meunier M (ed.). Compte-Rendu de recherches n°3: BVRE de Draix, Equipements pour l'eau et l'environnement, n. 21. Cemagref-Editions, 141-174.
- COPLANARH (1973) Metodologías utilizadas en el inventario nacional de tierras. Publicación Especial. Caracas, n. 36, 80 p.
- Foster G.R. & Lane, L.J. (1981) Modeling rill density-Discussion. Proc. Am. Soc. Civil Eng. 107 (IR1), 109-112.
- Hrissanthou, V. (1990) Application of a sediment routing model to a Middle European watershed. *Water Resour. Bull.*, 26, 801-810.

- Hrissanthou, V. (2005) Estimate of sediment yield in a basin without sediment data. *Catena*, **64**, 333-347.
- Hrissanthou, V. (2006) Comparative application of two mathematical models to predict sedimentation in Yermasoyia Reservoir. *Hydrol. Processes*, **20**, 3939-3952
- Jetten V., Govers, G. & Hessel, R. (2003) Erosion models: quality of spatial predictions. *Hydrol. Processes*, 17, 887-900.
- Langbein, W. B. & Schumm, S. A. (1958): Yield of Sediment in relation to mean annual precipitation. *Trans. Am. Geophys. Union*, 39(6), 1076-1084.
- Lenhart, T., Van Romapey, A. Steegen, A., Fohrer, N., Frede & H. Govers, G. (2005) Considering spatial distribution and deposition of sediment in lumped and semi-distributed models. *Hydrol. Processes*, **19**, 785-794.
- Risse L.M, Nearing, M.A., Nicks, A.D. & Laflen, J.M. (1993) Assessment of error in the universal soil loss equation. *Soil Science Society of America Journal*, 57, 825–833.
- Poesen, J. (1985) An improved splash transport model. Zeitschrift für Geomorphologie, 29, 193-211.
- Roelhl, J.W. (1962) Sediment source areas, delivery ratios and influencing morphological factors. IASH, Pub. 59, 202-213.
- US Forest Service (1980) An Approach to Water Resources Evaluation of Non-point Silvicultural Sources, a procedural handbook. EPA-600/8-80-012, Environmental Protection Agency, Washington DC.
- Verstraeten G. & Poesen, J. (1999) The nature of small-scale flooding, muddy and retention ponds sedimentation in central Belgium. Geomorphology. **29**(3-4): 275-292.
- Wischmeier, W. H. & Smith, D. D (1978): Predicting rainfall erosion losses. A guide for selection of practices for soil and water conservation. Agricultural Handbook, n. 537. USDA, Washington DC.
- Zang X.C, Nearing, M.A., Risse, L.M. & McGregor, K.C. (1996) Evaluation of WEPP runoff and soil loss predictions using natural runoff plot data. *Transactions of the ASAE*, **39**(3): 855-863.