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Abstract: Digital Terrain Modeling (DTM) is a computational model of the earth surface that 

represents relief and it has a wide range of applications. This work proposes a new 
approach to DTM using the Finite Element Method (FEM) point-based instead of 
mesh-based. The points used by the proposed methodology were obtained by data 
captured by satellite images. The most methods require the precomputation of a mesh 
on the surface of the terrain. Our methodology overcomes the mesh step, and then the 
modeling process is very fast. 
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INTRODUCTION 

Digital Terrain Model (DTM) is a topographic 
mathematical model of the earth surface that represents 
relief’s variations and can be manipulated by 
computational methods (Barnhill, 1977). Thus DTM 
represents the terrain elevations over the surface to 
being analyzed. To perform this task is necessary 
capturing spot samples on the interest region surface 
(Ochi et al., 2006; Zanardi, 2006; Felgueiras, 1997). 
The use of DTM is widely used in several areas of 
knowledge, mainly in engineering, providing very 
important kinds of information, for example: in the 
feasibility of urban planning (road construction projects, 
tunnels, dams and respective land displacements); in the 
extraction of drainage levels and networks; in research 
and environmental impact studies and etc. (Piteri et al., 
2007). In addition, DTM is a very powerful tool to 
solving problems of project deployments, aiding to 
perform volume calculations, areas and generate maps 
(Sangreman et al., 2014). 

There are several techniques to obtain the DTM, 
among them are: cartographic, topographic survey and 
photogrammetry. Generally, samples obtained by aerial-
photogrammetric surveys are used. This work is 
performed by airplanes equipped with photographic 
cameras and metric sensors that calculate the altitude of 
the sampled land, as shown in Fig. 1. 

The data obtained by the aerial photogrammetric can 
be interpreted as a set of points (xi, yi) in two-
dimensional space (2D). Each point (xi, yi) of this space 
has associated a third value (zi) which denotes the point 
altitude (elevation). So you can define two sets of 
sampling points, they are: (i) P = {(x0, y0), (x1, y1), ..., 
(xn-1, yn-1)} e (ii) S = {(x0, y0, z0), (x1, y1, z1), ..., (xn-1, yn-1, 
zn-1)}; where n denotes the number of points sampled. A 
two-dimensional example of the set P of sampled points 
can be seen in Fig. 2. 

 

 

Fig. 1 Illustration of the process of acquisition of the terrain data 
using aerial photogrammetric. 
Source: http://www.ipssurvey.com/foto1.jpg 

 

 

Fig. 2 Illustration of the set of points P sampled. 
 

In general, the value of zi is obtained using a distance 
sensor that emits a wave, and by the delay time of its 
reflection is computed the estimated altitude (distance). 
In this way it is possible to obtain the deformation of the 
terrain over the sampled points. 

Traditional methods of DTM require a priori the 
polygonal mesh generation (usually triangular or 
quadrangular) on the convex hull of the points sampled 
(set P). The reconstruction of a terrain model by DTM 
using triangulation of points is not a very recent idea. 
The main advantage of triangular meshes is the ability 
to make changes in the resolution of the model 
according to its complexity, providing an adaptive 
behavior (Bakambu et al., 2006; Lawson, 1977). The 
use of triangular meshes has been widely used in the 
various terrain modeling applications, in order to reduce 
geometric information, mainly in aerial photogrammetry 
(Fayek & Wong, 1996). However it's worth highlighting 
that computational cost for generating the mesh is 
considerable (Edelsbrunner, 2001). 

Triangular mesh do not have a unique triangulation 
algorithm, it has several different solutions. The most 
used algorithm in triangulation is Delaunay (Watson, 
1981) that it is able to maximize the lowest angle of 
each mesh triangle, so this method allows a triangle 
mesh with elements more regular (Sibson, 1978; Itame, 
2001). 

The redefinition of the mesh in its evolution process 
generates problems in a way to coincide with the 
discontinuities, this ends up generating a great 
degradation of the precision of the results and making 
the process much slower (Belytschko et al., 1996). 

The quality of the model is directly related to the 
amount of data sampled, in applications where realism 
is desired, a very high number of sampled points must 
be possessed; that is, the greater the number of 
interpolations made in the generation of the model the 
higher the quality of the model (Barros, 2002). 
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This work proposes a novel DTM method meshless 
only using the sampled points using Finite Element 
Method (FEM) (Giacchini, 2012). Due the method be 
meshless the computational cost is considerably reduced 
when compared with DTM traditional methods that use 
meshes. We too analyze the precision of the proposed 
methods using ground-truth models. The main idea of 
this work is not to compare results but rather to propose 
an unprecedented, very fast and very promising 
methodology. In this way the goal of the work is 
propose a new solution and to contribute with another 
researchers of the DTM area. 

The remaining of the paper is organized as follows: 
Section 2 presents the Finite Element theoretical 
background. The methodology is described in the 
Section 3. The Section 4 presents the results and 
analysis. Conclusion is discussed in Section 5. 
 
2 FINITE ELEMENT METHODS (FEM) 

The FEM is a useful mathematical tool for applications 
that require approximation or interpolation. It is a 
numerical method widely used to obtain approximations 
of mathematical problems that generally originate from 
a physical model. The efficiency of the FEM is related 
to an initial phase of preprocessing. This preprocessing 
is related with domain division of the object at the 
geometric and topological level, decomposing a 
complex domain into a mesh of elements, such as 
triangles, quadrilaterals (or even formed by both types 
of elements). This phase is of extreme importance for 
the regularity and positioning of the elements of the 
mesh, since they will determine the quality of the 
approximate solution, directly influencing the graphical 
representation of the model (Pereira, 2006). 

However, very recently Pereira (2017) proposed the 
FEMaR, a regression machine based in FEM meshless. 
Based in Pereira, we propose a novel meshless DTM 
technique that is very accurate and fast. 

 
Approximation Bases 

Let a vector space W composed of φ1, φ2, ..., φn where 
each φ elements is linearly independent and any 
elements of w ∈ W can be obtained by follow linear 
combination: 
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where a1, a2, ..., an are the coefficients and φ = (φ1, φ2, 
..., φn) is a base of W (Pereira, 2017). 
 
Interpolation 

Given n points x1, x2, .., xn of the domain W and n 
associated values y1, y2, .., yn of the space V. The 

interpolation aims to find a function B ∈ A that 
interpolates the pairs (xi, yi), thus: 
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The space A is composed by φ = (φ1, φ2, ..., φn), and 

needs of the values a1, a2, ..., an in the way that 
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In the context of DTM, given the points sampled, the 
interpolation is necessary to increase the number of 
points that represent the model, mainly in regions where 
the points were not sampled (sub-sampled regions), 
improving the model representation quality (Barbosa, 
1999). It is very important to note that the sampling 
point x can be found in any Rm. 
 

2.3 Shepard Basis 

For the Shepard basis (Shepard, 1968) each element φi 
is denoted by the Eq. 3.  
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W is a non-negative function, so that w(x, xi) tends to go 
to infinity when x tends to xi. A very common function 
used by Shepard is presented in Eq. 4 (k ≥ 0) (Pereira, 
2009). 
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Figure 3 shows the behavior of the Shepard basis 

using different values of k. 
 

 
Fig. 3 An element of the Shepard base with different values of k for 
the points xi indicated on the horizontal axis. (a) k = 0.5 (b) k = 1 (c) 
k = 2 (d) k = 3 (Pereira, 2009). 
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Interpolation 

The normalized radial basis has a unique mother 
function, which uses the distance from point x to point xi 
of a set of finite points x1, x2 ..., xn, the formula being: 
 

),()( ii xxx               (5) 

 
where |x, xi| denotes the Euclidean distance between x e 
xi. The mother function used is Gaussian bell, it is: 
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Some radial normalized basis can be seen in Fig. 4. 

 
The very same function interpolated by a Shepard 

bases and radial normalized bases can be seen in Fig. 5 
(Pereira, 2009). 
 
METHODOLOGY 

Our proposed methodology is able to interpolate the 
terrain surface and the pixel color of each sub-sampled 
region. So, besides the terrain model, our methodology 
to create a graphical 3d model, given an image very 
realistic. The schematic diagram of the proposed 
approach can be seen in Fig. 6. Given a dataset of 
discrete sampled data under terrain surface our 
methodology split the data information in three groups, 
they are: (i) position, (ii) height, and (iii) texture. In the 
sequence, we computed the interpolation weights and 
then we interpolated the no sampled point information 
(height and texture). 
 
 

 
Fig. 4 Elements of normalized radial base for the points xi indicated 
on the horizontal axis (Pereira, 2009). 
 
 

 
Fig. 5 Illustration of the interpolation result using (a) normalized 
radial base and (b) Shepard base with k = 2 (Pereira, 2007). 
 
 

 
Fig. 6 Schematic diagram of the proposed method. 
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In our experiments, we used four images, three real 
images and one synthetic (Fig. 7). To facilitate to the 
reader we denote the images as dataset1, dataset2, 
dataset3, and synthetic dataset, respectively. 

 

 

 

 

 
Fig. 7 Images used in the experiments. 

 

Fig. 8 Interpolated synthetic image with radial base normalized in 
grayscale to demonstrate the definition of height of the Z axis where 
is possible identify the 3D surface details. 
 

Due the images not contains surface information to 
perform the modeling of the terrain, we were 
transformed into gray scales to determine the model 
reliefs that is determined the Z axis (Fig. 8). It is not 
possible to determine the altitude of an image, due to 
the fact of the image to be 2D, having only two 
coordinates (x, y), and the model to be generated is 3D, 
having three coordinates (x, y, z). So, we considered that 
lighter the pixel in grayscale the higher its altitude. 

In the sequence to obtain the relief Z point, the FEM 
was used with two different bases of interpolation, they 
are: (i) normalized radial base, and (ii) the Shepard 
base. For each image, we consider the two different 
spacing between pixels: (i) two by two, and (ii) four by 
four. 

In addition to the interpolation of the surface relief, 
we also interpolated the texture considering the RGB 
pixel values from sampled points. In this context, the 
surface and texture are linearly interpolated, so the 
complexity of the interpolation process is O(n). It is 
important highlighted that the weights from Eq. 3 or 
Eq. 6 are computed one once time for texture and relief. 
 
RESULTS 

To visualize the digital terrain reconstructed we used a 
very popular ray tracing tool called POV-RAY 
(available in http://www.povray.org), where the 
interpolation information (relief and texture) are passed 
through of a script that read the contents of the files and 
generated the images. 

The digital terrain model of the synthetic dataset can 
be seen in Fig. 8 where is possible note clearly the 3D 
effect generated by our methodology. The digital model 
of the dataset1 can be seen in Fig. 9 and Fig. 10. The 
Fig. 9 and Fig. 10 present the results of the digital 
terrain  considering  the  normalized  radial  basis  using  
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Fig. 9 Digital terrain model of the dataset1 using radial basis and 
spacing of two by two. 
 
 

 
Fig. 10 Digital terrain model of the dataset1 using radial basis and 
spacing of four by four. 
 
 
spacing of two by two and four by four, respectively. In 
other way, the Fig. 15 and Fig. 16 present the digital 
terrain model considering Shepard basis using spacing 
of two by two and four by four, respectively. 

The digital model of the dataset2 can be seen in 
Fig. 11, Fig. 12 and Fig. 17, Fig. 18. Figure 11 and Fig. 
12 present the results of the digital terrain considering 
the normalized radial basis using spacing of two by two 
and four by four, respectively. In other way, the Fig. 17 
and Fig. 18 present the digital terrain model considering 
Shepard basis using spacing of two by two and four by 
four, respectively. 

The digital model of the dataset3 can be seen in 
Figs 1320. Figures 1314 present the results of the 
digital terrain considering the normalized radial basis 
using spacing of two by two and four by four, 
respectively. In other way, the Figs 1920 present the 
digital terrain model considering Shepard basis using 
spacing of two by two and four by four, respectively. 

 
Fig. 11 Digital terrain model of the dataset2 using radial basis and 
spacing of two by two. 
 

 
Fig. 12 Digital terrain model of the dataset2 using radial basis and 
spacing of four by four. 

 

 
Fig. 13 Digital terrain model of the dataset3 using radial basis and 
spacing of two by two. 
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Fig. 14 Digital terrain model of the dataset3 using radial basis and 
spacing of four by four. 

 

 
Fig. 15 Digital terrain model of the dataset1 using Shepard basis 
and spacing of two by two. 
 
 

 
Fig. 16 Digital terrain model of the dataset1 using Shepard basis 
and spacing of four by four. 

 
Fig. 17 Digital terrain model of the dataset2 using Shepard basis 
and spacing of two by two. 
 

 
Fig. 18 Digital terrain model of the dataset2 using Shepard basis 
and spacing of four by four. 
 
 

 
Fig. 19 Digital terrain model of the dataset3 using Shepard basis 
and spacing of two by two. 
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Clearly, it is possible to observe that the results 
obtained by the radial basis are visually much better 
than those of the Shepard basis, mainly due the non-
smooth behavior of the Shepard basis (Fig. 5).  

The influence of the spacing is more visible in 
Shepard basis, however too degenerate the Radial basis, 
as expected. In order to perform a more precise and 
analytical comparison between the both types of bases 
we used the well-known metrics Mean Absolute Error 
(MAE) and Mean Squared Error (MSE) considering the 
Z value obtained. The computer used for experiments 
has 8GB of RAM and i5 6500 processor.  
 
 

 
Fig. 20 Digital terrain model of the dataset3 using Shepard basis and 
spacing of four by four. 
 
Table 1. Comparison metrics for the dataset1 using Shepard and 
Radial basis. 

Dataset dataset1 
Spacing 2 4 

Shepard Fig Fig. 15 Fig Fig. 16 
MAE 80.421124 MAE 81.396648 
MSE 9035.863866 MSE 9192506332 
Time 11.00 min Time 11.01 min 

Normalized 
Radial 

Fig Fig. 9 Fig Fig. 10 
MAE 79.994168 MAE 80.004225 
MSE 8971.539481 MSE 8973.539941
Time 13.00 min Time 14.00 min 

 
Table 2. Comparison metrics for the dataset2 using Shepard and 
Radial basis. 

Dataset dataset2 
Spacing 2 4 

Shepard Fig Fig. 17 Fig Fig. 18 
MAE 96.910022 MAE 98.186888 
MSE 12830.362712 MSE 13067.795555 
Time 09.35 min Time 09.16 min 

Normalized 
Radial 

Fig Fig. 11 Fig Fig. 12 
MAE 96.299058 MAE 96.307562 
MSE 12705.898069 MSE 12707.578089 
Time 11.85 min Time 10.46 min 

Table 3. Comparison metrics for the dataset3 using Shepard and 
Radial basis. 

Dataset dataset1 
Spacing 2 4 

Shepard Fig Fig. 19 Fig Fig. 20 
MAE 73.809473 MAE 74.683891 
MSE 7446.869099 MSE 7578.048903 
Time 12.54 min Time 12.34 min 

Normalized 
Radial 

Fig Fig. 13 Fig Fig. 14 
MAE 73.429301 MAE 73.415194 
MSE 7391.531702 MSE 7389.497806 
Time 13.68 min Time 13.33 min 

 
 

Tables 13 present the comparison metrics 
considering dataset1, dataset2 and dataset3 with 
processing time, MSE and MAE. In all experiments, the 
Radial basis obtained better results than Shepard, 
however the Shepard is faster than Radial basis. The 
better results obtained by Radial basis is due the smooth 
behavior of the basis (Fig. 5a), in other hand; Shepard 
basis contains some slopes regions (Fig. 5b). The Radial 
is slower than Shepard basis due the computation of the 
exponential function (see Eq. 6). Both basis obtained 
very promising results and generated very realist images 
without the need of mesh generation. 
 
CONCLUSIONS 

The main idea of this work is not to compare results but 
rather to propose an unprecedented, very fast and very 
promising methodology. The results obtained through 
tests performed we can concluded that the Shepard base 
although faster to process does not have a so good 
representation of the model, and its altitude error and 
RGB ends up being larger than that of the normalized 
radial base. Since the normalized radial base method 
presents a great appearance, representing the model, 
having an altitude error and RGB slightly lower than the 
base of Shepard but a slightly higher processing time as 
well. The results presented are very promising; the 
normalized radial basis can represents precisely the 3D 
terrain models. The size of the image does not influence 
the quality of the model, but rather the amount of 
interpolated elements. It is worth noting that there are 
no DTM designs in the literature that use finite element 
methods without the use of a mesh to generate the 
model.  
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