Análise Multifractal do Ibovespa: Dinâmicas de Preço, Volume Negociado e Eficiência de Mercado

Autores

  • Alexandra Kelly de Moraes UFLA
  • Paulo Sérgio Ceretta
  • Luiz Gonzaga Castro Júnior

DOI:

https://doi.org/10.22478/ufpb.2318-1001.2024v12n1.70209

Resumo

Objetivo: O presente estudo tem como objetivo investigar as flutuações de preço, volume negociado e correlação cruzada do Ibovespa, por meio da aplicação de métodos multifractais. O foco está em compreender as tendências do mercado financeiro de forma mais aprofundada e embasar decisões de forma mais sólida.

Fundamento: Embora os métodos multifractais sejam comumente utilizados na análise de flutuações de preços de ativos financeiros, este estudo se destaca por investigar as flutuações de preços e volume de ativos negociados no mercado financeiro.

Método: Foram empregados os métodos de Análise de Flutuação Destendenciada Multifractal (MF-DFA) e Análise de Correlação Cruzada Multifractal (MF-DCCA) na análise das propriedades das séries de dados do Índice da Bolsa de Valores de São Paulo (Ibovespa).

Resultados: A análise revelou que as séries diárias em reais e dólares apresentam distribuições e flutuações crescentes, com uma multifractalidade que reflete mudanças temporais tanto anti-persistentes quanto persistentes, indicando um comportamento com grandes e pequenas flutuações. Além disso, o volume negociado e a correlação cruzada do preço-volume demonstraram tendências persistentes, sugerindo um comportamento com memória de longo prazo.

Contribuições: Este estudo contribui significativamente para a literatura multifractal ao analisar a complexidade das séries do Ibovespa e do volume negociado. Destaca a importância de pesquisas mais aprofundadas no mercado brasileiro e fornece evidências relevantes para investidores, especialmente em períodos de turbulência como a recessão causada pela Covid-19. Os resultados ressaltam a relevância do volume negociado como fonte relevante de informações para a tomada de decisões no mercado financeiro.

Downloads

Não há dados estatísticos.

Referências

Ahundjanov, B. B., Akhundjanov, S. B. Okhunjanov, E. & Botir b. (2021). Risk perception and oil and gasoline markets under COVID-19. Journal of Economics and Business, Elsevier, v.115(C). https://doi.org/10.1016/j.jeconbus.2020.105979

Ali, S. R. M., Mensi, W., Anik, K. I., Rahman, M. & Kang, S. H. (2022). The impacts of COVID-19 crisis on spillovers between the oil and stock markets: Evidence from the largest oil importers and exporters. Economic Analysis and Policy, v. 73: 345–372. https://doi.org/10.1016/j.eap.2021.11.009.

Aloui, C., Shahzad, S.J.H. & Jammazi, R. (2018). Dynamic efficiency of European credit sectors: arolling-window multifractal detrended fluctuation analysis. Physica, 506 pp. 337-349. https://doi.org/10.1016/j.physa.2018.04.039

Barbaglia, L., Croux, C. & Wilms, I. (2020). Volatility spillovers in commodity markets: A large t-vector autoregressive approach. Energy Economics, v. 85:1-11. https://doi.org/10.1016/j.eneco.2019.104555

Beaver, W.H. (1968). The information content of annual earnings announcements. J. Account. Res. pp. 67-92. https://doi.org/10.2307/2490070

Borgards, O., Czudaj, R. L.C. & Hoang, T. H. V. (2021). Price overreactions in the commodity futures market: An intraday analysis of the Covid-19 pandemic impact. Resources Policy, v.71. https://doi.org/10.1016/j.resourpol.2020.101966

Cont, R. (2001). Empirical properties of asset returns: stylized facts and statistical issues. Quantitative Finance, Volume 1, Issue 2, pages 223-236. https://doi.org/10.1080/713665670

Crouch, R.L. (1970). The volume of transactions and price changes on the New York Stock Exchange. Financial Analysts Journal, v.26 (4) pp. 104-109. https://doi.org/10.2469/faj.v26.n4.104

Chen, C. Hui, E. C. M. & Chiang, S. (2021). What do we know about the status of housing market in China? Evidence from price and rent spillovers across first-tier cities. Habitat International, v.118: pp.1-10. https://doi.org/ 10.1016/j.habitatint.2021.102471

Corbet, S., Goodell, J. W. & Günay, S. (2020). Co-movements and spillovers of oil and renewable firms under extreme conditions: New Evidence from negative WTI prices during COVID-19. Energy Economics, 92. https://doi.org/ 10.1016/j.eneco.2020.104978.

El Alaoui, M. (2017). Price–volume multifractal analysis of the moroccan stock market. Physica A: Statistical Mechanics and its Applications, V. 486, 15, Pages 473-485. https://doi.org/10.1016/j.physa.2017.05.052

Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The Journal of Finance, v. 25: 383–417.

Ferreira, P. (2019). Assessing the relationship between dependence and volume in stock markets: A dynamic analysis. Physica A: Statistical Mechanics and Its Applications, v. 516: pp.90–97. https://doi.org/10.1016/j.physa.2018.09.187

Guo, Y., Yu, Z., Yu, C., Cheng, H., Chen, W. & Zhang, H. (2021). Asymmetric multifractal features of the price–volume correlation in China’s gold futures market based on MF-ADCCA. Research in International Business and Finance, V. 58. https://doi.org/10.1016/j.ribaf.2021.101495

Haroon, O. & Rizvi, S.A.R. (2020). COVID-19: media coverage and financial markets behavior—A sectoral inquiry. J. Behav. Exp. Finance, v. 27. https://doi.org/10.1016/j.jbef.2020.100343. 100343.

Hasan, R. & Salim, M. M. (2017). Power law cross-correlations between price change and volume change of indian stocks. Physica A: Statistical Mechanics and Its Applications, 473: 620–31. https://doi.org/10.1016/j.physa.2017.01.002

Hurst, E. (1951). Long-term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers, v.116, pp.770-799.

IPEA. (2022) Carta conjuntura, Número 56, Visão geral da conjuntura, nota de conjuntura 31, terceiro trimestre de 2022. Fonte: https://www.ipea.gov.br/cartadeconjuntura/wp-content/uploads/2022/09/220930_cc_56_nota_31_visao_geral.pdf

Jiang, Z.-Q. Xie, W-J., Zhou, W-X. & Sornette, D. (2019). Multifractal analysis of financial markets: a review. Reports on Progress in Physics, V. 82. https://doi.org/ 10.1088/1361-6633/ab42fb

John, K. & Li, J. (2021). Covid-19, volatility dynamics, and sentiment trading. Journal of Banking & Finance, v. 133. https://doi.org/10.1016/j.jbankfin.2021.106162.

Rak, R., Drozdż, S., Forczek, M., Kwapień, J. & Oświȩcimka, P. (2015). Detrended cross-correlations between returns, volatility, trading activity, and volume traded for the stock market companies. Europhys. Lett., v. 112. https://doi.org/10.5506/APhysPolB.44.2035

Rizvi, S.A., Dewandaru, G., Bacha, O.I., & Masih, M. (2014). An analysis of stock market efficiency: Developed vs Islamic stock markets using MF-DFA. Physica A: Statistical Mechanics and its Applications. V. 407, p. 86-99. https://doi.org/10.1016/j.physa.2014.03.091

Rodriguez, E., Aguilar-Cornejo, M., Femat, R. & Alvarez-Ramirez, J. (2014). Us stock market efficiency over weekly, monthly, quarterly and yearly time scales. Physica A: Statistical Mechanics and Its Applications, v.413, p.554–564. https://doi.org/10.1016/j.physa.2014.07.036

Ruan, Q. & Haocui, V. (2020). Spread de esmagamento de soja da China: análise não linear baseada em MF-DCCA. Physica A., V. 554. https://doi.org/10.1016/j.physa.2019.123899

Ruan, Q., Wang, Y., Lu, X. & Qin, J. (2016). Cross-correlations between Baltic Dry Index and crude oil prices. Phys. A Stat. Mech. Its Appl., v. 453, pp. 278-289. 10.1016/j.physa.2016.02.018

Sharif, A., Aloui, C. & Yarovaya, L. (2020). Covid-19 pandemic, oil prices, stock market, geopolitical risk and policy uncertainty nexus in the US economy: fresh evidence from the wavelet-based approach. International Review of Financial Analysis, Elsevier, v. 70. https://doi.org/10.1016/j.irfa.2020.101496.

Stošić, D., Stošić, D., Ludermir, T. B. & Stošić, T. (2019). Multifractal behavior of price and volume changes in the cryptocurrency market. Physica A: Statistical Mechanics and its Applications, V. 520, pp. 54-61. https://doi.org/10.1016/j.physa.2018.12.038

Stošić, D., Stošić, D., Stošić, T. & Stanley, H. E. (2015). Multifractal properties of price change and volume change of stock market índices. Physica A: Statistical Mechanics and its Applications, Elsevier, v. 428, pp. 46-51. https://doi: 10.1016/j.physa.2015.02.046

Sukpitak, J. & Varagorn, H. (2016). The influence of trading volume on market efficiency: The dcca approach. Physica A: Statistical Mechanics and Its Applications. v. 458: 259–65. https://doi:10.1016/j.physa.2016.03.080

Oświȩcimka, P., Drożdż, S., Forczek, M., Jadach, S. & Kwapień, J. Detrended cross-correlation analysis consistently extended to multifractality, Phys. Rev. E. v. 89, 2014. https://doi.org/10.1103/PhysRevE.89.023305

Patil, A. C. & Rastogi, S. (2019). Time-Varying Price–Volume Relationship and Adaptive Market Efficiency: A Survey of the Empirical Literature. Journal of Risk and Financial Management, v.12. https://doi.org/10.3390/jrfm12020105

Patil, A. C. & Rastogi, S. (2020). Multifractal Analysis of Market Efficiency across Structural Breaks: Implications for the Adaptive Market Hypothesis. Journal of Risk and Financial Management, v.13. https://doi:10.3390/jrfm13100248

Peng, C-K., Shlomo, H., Eugene, S. H. & Goldberger, A. L. (1994). Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos: An Interdisciplinary Journal of Nonlinear Science, V. 5. https://doi:10.1063/1.166141

Peters, E. E. (1991). Chaos and order in the capital markets - a new view of cycles, prices and Market volatility. New York: John Wiley and Son.

Podobnik, B. & Stanley, H. (2008). Detrended Cross-Correlation Analysis: a new method for analyzing two nonstationary time series. Physical Review Letters, v. 100. https://doi.org/10.1103/PhysRevLett.100.084102

Kantelhardt, J.W., Zschiegner, S.A., Koscielny-Bunde, E., Havlin, S., Bunde, A. & Stanley, H. (2002). Multifractal detrended fluctuation analysis of nonstationary time series. Physica A: Statistical Mechanics and its Applications, v. 316, pp. 87-114.

Karpoff, J. M. A. (1986). Theory of Trading Volume. The Jornal of Finance. V. 41. https://doi.org/10.1111/j.1540-6261.1986.tb02531.x

Kim, Y., Hwang, S-Y., Kim, J-M. & Kim, S. (2022). Linear time-varying regression with copula–DCC–asymmetric–GARCH models for volatility: the co-movement between industrial electricity demand and financial factors. Applied Economics. https://doi.org/ 10.1080/00036846.2022.2086684.

Kristoufek, L. & Vosvrda, M. (2013). Measuring capital market efficiency: Global and local correlations structure. Physica A: Statistical Mechanics and its Applications, vol. 392, pp. 184-193. https://doi.org /10.1016/j.physa.2012.08.003

Khuntia, S. & Pattanayak. J. K. (2018). Adaptive market hypothesis and evolving predictability of bitcoin. Economics Letters, v. 167: 26–28. https://doi.org/10.1016/j.econlet.2018.03.005

Kukacka, J. & Kristoufek, L. (2020). Do ‘complex’ financial models really lead to complex dynamics? Agent-based models and multifractality. Journal of Economic Dynamics and Control, V. 113. https://doi.org/10.1016/j.jedc.2020.103855

Lo, A. W. (2004). The Adaptive Markets Hypothesis. The Journal of Portfolio Management 30th Anniversary. v. 30, pp.15-29. https://doi.org/10.3905/jpm.2004.442611

Mandelbrot, B. B. (1999). A multifractal walk down wall street. Scientific American, a division of Nature America, Inc., v. 280, n. (2) pp. 70-73. https://www.jstor.org/stable/26058060

Mensi, W., Lee, Y-J., Vo, X.V. & Yoon, S-M. (2021). Does oil price variability affect the long memory and weak form efficiency of stock markets in top oil producers and oil Consumers? Evidence from an asymmetric MF-DFA approach. The North American Journal of Economics and Finance, V. 57. https://doi.org/10.1016/j.najef.2021.101446

Miloş, L. R., Haţiegan, C., Miloş, M. C., Barna, F. M. & Boțoc, C. (2020). Multifractal Detrended Fluctuation Analysis (MF-DFA) of Stock Market Indexes. Empirical Evidence from Seven Central and Eastern European Markets. Sustainability, MDPI, vol. 12(2), pages 1-15. https://doi.org/10.3390/su12020535

Monge, M. (2022). Bunker fuel, commodity prices and shipping market indices following the COVID-19 pandemic. A time-frequency analysis. International Economics, V. 172, P. 29-39. https://doi.org/10.1016/j.inteco.2022.08.003.

Nason, G. P. (1999). Wavelets in Time-Series Analysis. Phil. Trans. Roy. Soc. Lond. A, v. 357.

Tauchen, G. E. & Pitts, M. (1983). The Price Variability-Volume Relationship on Speculative Markets. Econometrica, Vol. 51, No. 2, pp. 485-505. https://doi.org/10.2307/1912002

Topcu, M. & Gulai, O. S. (2020). The impact of COVID-19 on emerging stock markets Finance. Research Letters, v. 36. https://doi.org/10.1016/j.frl.2020.101691

Tiwari, A. K., Sim, B. C. & Gupta, R. (2019). Stock market efficiency analysis using long spans of Data: A multifractal detrended fluctuation approach. Finance Research Letters, V. 28, pp. 398-410. https://doi.org/10.1016/j.frl.2018.06.012

Umar, Z., Jareno, F. & Escribano, A. (2021). Agricultural commodity markets and oil prices: An analysis of the dynamic return and volatility connectedness. Resources Policy, v. 73, pp. 1-14. https://doi.org/10.1016/j.resourpol.2021.102147.

Umar, Z., Polat, O., Choi, S.-Y. & Teplova, T. (2022). The impact of the Russia-Ukraine conflict on the connectedness of financial markets. Finance Research Letters, v. 48. https://doi.org/ 10.1016/j.frl.2022.102976.

Zaremba, A., Kizys, R., Aharon, D.Y. & Demir, E. (2020). Infected markets: novel Coronavirus, government interventions, and stock return volatility around the Globe. Finance Res. Lett. V. 35. https://doi.org/ 10.1016/j.frl.2020.101597.

Zhang, W., Lia, Y., Zhang, Z. & Shen, D. (2018). The dynamic cross-correlations between foreign news, local news and stock returns. Physica A: Statistical Mechanics and its Applications, V. 509, pp. 861-872. https://doi.org/10.1016/j.physa.2018.06.098.

Zhang, X., Ding, Z., Hang, J. & He, Q. (2022). How do stock price indices absorb the COVID-19 pandemic shocks? The North American Journal of Economics and Finance, V. 60. https://doi.org/10.1016/j.najef.2022.101672.

Zhou, Y., Lu, B., Dayong, L. & Ruan, Q. (2019). The informativeness of options-trading activities: Non-linear analysis based on MF-DCCA and Granger test. Physica A: Statistical Mechanics and its Applications, V. 534. https://doi.org/10.1016/j.physa.2019.122269.

Wang, H. & Li, S. (2021). Asymmetric volatility spillovers between crude oil and China's financial markets. Energy, v. 233. https://doi.org/10.1016/j.energy.2021.121168.

WORLDBANK. Global economic Prospects, (2022). Disponível em: https://openknowledge.worldbank.org/bitstream/handle/10986/37224/Global-Economic-Prospects-June-2022-Global-Outlook.pdf.

Downloads

Publicado

2025-03-03

Como Citar

Alexandra Kelly de Moraes, Paulo Sérgio Ceretta, & Luiz Gonzaga Castro Júnior. (2025). Análise Multifractal do Ibovespa: Dinâmicas de Preço, Volume Negociado e Eficiência de Mercado. Revista Evidenciação Contábil &Amp; Finanças, 12(1), 128–149. https://doi.org/10.22478/ufpb.2318-1001.2024v12n1.70209

Edição

Seção

Seção Nacional