A DDoS Detection Algorithm Using Caos Based on Density of Maxima

Autores

  • Josimar Assumpção Filho UFPB
  • Alisson Brito
  • Ewerton Salvador

DOI:

https://doi.org/10.22478/ufpb.2595-0622.2021v5n2.58899

Palavras-chave:

Network Traffic Analysis, Chaos Theory, Density of Maxima, Netowrk Security

Resumo

In this paper, a technique is presented to analyze and detect anomalies in network data flows. The Density of Maxima is
used to measure the chaotic behavior of network traffic in order to detect DDoS attacks. The experiments were performed using data
containing synthetic traffic created with the JMeter tool, real data from the World Cup 1998, CAIDA 2007 and DARPA 2009 DDoS
Malware datasets. All tests demonstrated the effectiveness of the technique in identifying when the attacks occurred, as well as in
separating regular from DDoS traffic.

Downloads

Não há dados estatísticos.

Downloads

Publicado

2021-12-31

Como Citar

Assumpção Filho, J., Brito, A., & Salvador, E. (2021). A DDoS Detection Algorithm Using Caos Based on Density of Maxima. Comunicações Em Informática, 5(2), 9–12. https://doi.org/10.22478/ufpb.2595-0622.2021v5n2.58899

Edição

Seção

Artigos

Artigos mais lidos pelo mesmo(s) autor(es)