Módulo híbrido de membranas de microfiltração e carvão ativado com nanopartículas metálicas
DOI:
https://doi.org/10.22478/ufpb.1981-1268.2019v13n3.47386Abstract
Esta pesquisa contribuiu para o desenvolvimento de módulo híbrido gravitacional de membrana de microfiltração comercial de acetato de celulose e um material bactericida, carvão ativado granular impregnado com 0,5% de prata e 0,5% de cobre (CAG/AgCu). Os materiais adsorventes foram caracterizados por técnicas de adsorção de nitrogênio, microscopia eletrônica de varredura (MEV), espectrometria de energia dispersiva (EDX), microscopia eletrônica de transmissão (MET) e difração de raios-X (DRX). A eficiência do módulo híbrido foi verificada por meio da avaliação do (i) fluxo permeado, (ii) pH, (iii) turbidez, (iv) remoção de cloro livre e (v) eficiência bactericida. O filtro apresentou maiores fluxos iniciais de permeado, não alterou o pH, não aumentou significativamente a turbidez, e apresentou remoções de cloro e Escherichia coli superiores a 90% e 3,7 log respectivamente, revelando seu potencial na tecnologia de filtros para tratamento de água.
Downloads
References
APHA, AWWA, WEF. 2012. Standard Methods for the Examination of Water & Wastewater, 22 ed edn: American Public Health Association, 1496 p.
Brick T, Primrose B, Chandrasekhar R, Roy S, Muliyil J, Kang G. 2004. Water contamination in urban south India: household storage practices and their implications for water safety and enteric infections. International journal of hygiene and environmental health, 207(5):473-480.
Peter-Varbanets M, Zurbrügg C, Swartz C, Pronk W. 2009. Decentralized systems for potable water and the potential of membrane technology. Water Research, 43(2):245-265.
Silva FV, Yamaguchi NU, Lovato GA, Silva FA, Reis MH, Amorim MT, Tavares CR, Bergamasco R. 2012. Effects of coconut granular activated carbon pretreatment on membrane filtration in a gravitational driven process to improve drinking water quality. Environmental technology, 33(4-6):711-716.
Marsh H, Rodríguez-Reinoso F. 2006. Activated Carbon: Elsevier Science & Technology Books, p.
Bhatnagar A, Hogland W, Marques M, Sillanpää M. 2013. An overview of the modification methods of activated carbon for its water treatment applications. Chemical Engineering Journal, 219(0):499-511.
Zhao Y, Wang Z-q, Zhao X, Li W, Liu S-x. 2013. Antibacterial action of silver-doped activated carbon prepared by vacuum impregnation. Applied Surface Science, 266(0):67-72.
Stoquart C, Servais P, Bérubé PR, Barbeau B. 2012. Hybrid Membrane Processes using activated carbon treatment for drinking water: A review. Journal of Membrane Science, 411–412:1-12.
Voutchkov N. 2010. Considerations for selection of seawater filtration pretreatment system. Desalination, 261(3):354-364.
Kim K-Y, Kim H-S, Kim J, Nam J-W, Kim J-M, Son S. 2009. A hybrid microfiltration–granular activated carbon system for water purification and wastewater reclamation/reuse. Desalination, 243(1–3):132-144.
Bergamasco R: Carvão ativado impregnado com prata e cobre para eliminação de microrganismos da água. In. Brasil: Universidade Estadual de Maringá; 2010.
Yamaguchi NU, Abe SAL, Medeiros FVdS, Vieira AMS, Bergamasco R. 2017. Hybrid gravitational microfiltration system for drinking water purification. Revista Ambiente & Água, 12:168-178.
Bergamasco R, da Silva FV, Arakawa FS, Yamaguchi NU, Reis MHM, Tavares CJ, de Amorim MTPS, Tavares CRG. 2011. Drinking water treatment in a gravimetric flow system with TiO2 coated membranes. Chemical Engineering Journal, 174(1):102-109.
Ngarmkam W, Sirisathitkul C, Phalakornkule C. 2011. Magnetic composite prepared from palm shell-based carbon and application for recovery of residual oil from POME. J Environ Manage, 92(3):472-479.
Srinivasan NR, Shankar PA, Bandyopadhyaya R. 2013. Plasma treated activated carbon impregnated with silver nanoparticles for improved antibacterial effect in water disinfection. Carbon, 57(0):1-10.
Baiocco D, Lavecchia R, Natali S, Zuorro A. 2016. Production of Metal Nanoparticles by Agro-Industrial Wastes: A Green Opportunity for Nanotechnology. Chemical Engineering Transactions, 47:6.
Kim DJ, Yie JE. 2005. Role of copper chloride on the surface of activated carbon in adsorption of methyl mercaptan. Journal of Colloid and Interface Science, 283(2):311-315.
Muñiz G, Fierro V, Celzard A, Furdin G, Gonzalez-Sánchez G, Ballinas ML. 2009. Synthesis, characterization and performance in arsenic removal of iron-doped activated carbons prepared by impregnation with Fe(III) and Fe(II). Journal of Hazardous Materials, 165(1–3):893-902.
Bandosz TJ, Petit C. 2009. On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds. Journal of Colloid and Interface Science, 338(2):329-345.
Goscianska J, Nowak I, Nowicki P, Pietrzak R. 2012. The influence of silver on the physicochemical and catalytic properties of activated carbons. Chemical Engineering Journal, 189–190(0):422-430.
BRASIL: Portaria nº 2.914, de 12 de dezembro de 2011. Dispõe sobre os procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade. In.: Ministério da Saúde; 2011.
Wang W, Xiao K, He T, Zhu L. 2015. Synthesis and characterization of Ag nanoparticles decorated mesoporous sintered activated carbon with antibacterial and adsorptive properties. Journal of Alloys and Compounds, 647:1007-1012.
Ilnicka A, Walczyk M, Lukaszewicz JP, Janczak K, Malinowski R. 2016. Antimicrobial carbon materials incorporating copper nano-crystallites and their PLA composites. Journal of Applied Polymer Science, 133(20):n/a-n/a.
Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S. 2008. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta biomaterialia, 4(3):707-716.