Changes on plasmatic electrolytes and behavior of freshwater fish, Luciobarbus bocagei, as a function of acute copper exposure

Autores

  • Fernandes Conceição UFPB/CCEN, João Pessoa, Paraíba, Brasil
  • Touir Ahlem Escola Superior Agrária, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
  • Teixeira Amilcar Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.

DOI:

https://doi.org/10.22478/ufpb.1981-1268.2019v13n1.46435

Resumo

Plasma levels of Na+, K+ and Ca2+ were evaluated in fish exposed / not exposed to sublethal concentrations of Cu to assess adverse effects on osmoregulation as well as their ability to reverse these levels. Acute toxicity tests were performed using barbells (Luciobarbus bocagei) under two different concentrations of Cu. Barbells exposed to Cu showed ionic imbalance, respiratory difficulties, mortality and reduced value of K. According to the results, plasma levels of K+ and Ca2+increase, while plasma levels of Na+ decrease, allowing the fish an osmotic adjustment and a reduction in susceptibility to Cu. Under the conditions of this experiment, fish also showed the ability to reverse electrolyte levels when they are no longer exposed to Cu; however, dependent on exposure concentration.

Downloads

Não há dados estatísticos.

Biografia do Autor

Fernandes Conceição, UFPB/CCEN, João Pessoa, Paraíba, Brasil

Possuo graduação em Ciências Biológicas (2000) pela Universidade do Estado do Rio de Janeiro, mestrado (2003) e doutorado (2007) em Ecologia pela Universidade do Estado do Rio de Janeiro. Fiz pós-doutorado no Departamento de Botânica da Universidade Federal do Rio de Janeiro. Sou professora associada do Departamento de Sistemática e Ecologia da Universidade Federal da Paraíba, ministrando disciplinas na área de Ecologia na graduação e na Pós Graduação (Prodema - Programa Regional de Pós-Graduação em Desenvolvimento e Meio Ambiente). Sou editora de área da revista Gaia Scientia. Tenho experiência na área de Ecologia, com ênfase em Ecologia Vegetal e Etnobotânica, atuando principalmente nos seguintes temas: fenologia, biologia reprodutiva, polinização, interação animal/ planta e relações entre espécies simpátricas. Desde 2010, tenho desenvolvido pesquisas na área de etnobotânica e sua relação com a conservação de recursos vegetais. Email de contato: denidcruz@dse.ufpb.br

Referências

Alexandre CM, Quintella BR, Ferreira AF, Romão FA, Almeida PR (2014). Swimming performance and ecomorphology of the Iberian barbel Luciobarbus bocagei (Steindachner, 1864) on permanent and temporary rivers. Ecol Freshw Fish 23: 244–258.

Atli G, Canli M (2007). Enzymatic responses to metal exposures in a freshwater fish Oreochromis niloticus. Comp Biochem Physiol C Toxicol Pharmacol 145: 282-287.

Atli G, Canli M (2011). Essential metal (Cu, Zn) exposures alter the activity of ATPases in gill, kidney and muscle of tilapia Oreochromis niloticus. Ecotoxicology 20: 1861–1869.

Bat L, Akbulut M, Çulha M, Gündodu A, Satilmif HH (2000). Effect of temperature on the toxicity of zinc, copper and lead to the freshwater amphipod Gammarus pulex pulex (L., 1758). Turk J Zool 24: 409-415.

Brás MSP (2013). Caracterização das Águas de Trás-os-Montes. Estudo Comparativo dos Resultados da Terra Fria e da Terra Quente. MSc, School of Agriculture, Polytechnic Institute of Bragança, Portugal.

Cao J, Chen J, Wang J, Wu X, Yu L, Xie L (2013). Tissue distributions of fluoride and its toxicity in the gills of a freshwater teleost, Cyprinus carpio. Aquat Toxicol 130– 131: 68– 76.

Eastwood S, Couture P (2002). Seasonal variations in condition and liver metal concentration of yellow perch (Perca flavescens) from a metal-contaminated environment. Aquat Toxicol 58: 43-56.

Erickson RJ, Nichols JW, Cook PM, Ankley GT (2008). Bioavailability of chemical contaminants in aquatic systems. In: Di Giulio RT, Hinton DE, editors. The toxicology of fishes. CRC Press. Taylor and Francis Group, Boca Raton, pp 9-54

Evans DH (2008). Teleost fish osmoregulation: what have we learned since August Krogh Homer Smith and Ancel Keys. Am J Physiol Regul Integr Comp Physiol 295: 704-713. DOI: 10.1152/ajpregu.90337.2008

Evans DH, Claiborne JB (2009). Fish osmotic and ionic regulation. In: Evans DH, editors. Osmotic and ionic regulation: cells and animals. CRC Press. Boca Raton, pp 295-366.

Evans DH, Piermarini PM, Choe KP (2005). The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation and excretion of nitrogenous wastes. Physiol Rev 85: 97-177.

Fernandes C, Afonso A, Salgado MA (2011). Metabolic and structural role of major fish organs as an early warning system in population assessment. In: Friedman AG, editors. Lagoons: biology, management and environmental impact. Nova Science Publishers, Inc. ISBN: 978-1-61761-738-6. pp 1-39.

Fernandes C, Fontaínhas-Fernandes A, Coimbra A, Saavedra MA, Salgado MA (2009). Biochemical blood parameters: are they effective biomarkers of chronic toxicity? In: Kungolos, Aravossis, Karagiannidis, Samaras, editors. SECOTOX Conference and the 2nd International Conference on Environmental Management, Engineering, Planning and Economics (CEMEPE), ISBN 978-960-6865-09-1. Vol. I pp 191-196.

Fernandes C, Fontaínhas-Fernandes A, Monteiro SM, Salgado MA (2007). Changes in plasma electrolytes and gill histopathology in wild Liza saliens from the Esmoriz-Paramos coastal lagoon, Portugal. Bull Environ Contam Toxicol 79: 301-5.

Gilmour KM, Perry SF (2009). Carbonic anhydrase and acid-base regulation in fish. J Exp Biol 212: 1647-1661.

Grosell M, Wood CM (2002). Copper uptake across rainbow trout gills: mechanisms of apical entry. J Exp Biol 205: 1179-88.

Grosell M, Wood CM, Walsh PJ (2003). Copper homeostasis and toxicity in the elasmobranch Raja erinacea and the teleost Myoxocephalus octodecemspinosus during exposure to elevated water-borne copper. Comp Biochem Physiol C 135: 179-190.

Hughes G.M (1984). General anatomy of the gills. In: Randall DJ, editors. Fish physiology, Vol. XA, Academic Press, New York pp.1-72.

INAG (2008). Manual para a Avaliação Biológica da Qualidade da Água em Sistemas Fluviais Segundo a Directiva Quadro da Água-Protocolo de Amostragem e Análise para a Fauna Piscícola. Ministério do Ambiente, Ordenamento do Território e do Desenvolvimento Regional. Instituto da Água, I.P, Portugal.

Kumari K, Khare A, Dange S (2014). The applicability of oxidative stress biomarkers in assessing chromium induced toxicity in the fish Labeo rohita. Biomed Res Int 2014 Article ID 782493. http://dx.doi.org/10.1155/2014/782493

Kumari K, Ranjan N, Sinha RC (2011). Multiple biomarker response in the fish, Labeo rohita due to hexavalent chromium. 2011 2nd International Conference on Biotechnology and Food Science IPCBEE vol.7 IACSIT Press, Singapore, pp 155-158

Laurén DJ, McDonald D G (1985). Effects of copper on branchial ionoregulation in the rainbow trout, Salmo gairdneri Richardson. Modulation by water hardness and pH. J Comp Physiol B 155: 635-644.

Li J, Quabius ES, Wendelaar Bonga SE, Flik G, Lock RAC (1998). Effects of water-borne copper on branchial chloride cells and Na+/K+-ATPase activities in Mozambique tilapia (Oreochromis mossambicus). Aquat Toxicol 43:1-11

Little E E, Brewer S K (2001). Neurobehavioral toxicity in fish. In: Schlenk D, Benson WH, editors. Target organ toxicity in marine and fresh water teleosts. Taylor & Francis, London, UK. pp. 140-174.

Little EE, Finger SE (1990). Swimming behavior as an indicator of sublethal toxicity in fish. Environ Toxicol Chem 9: 13–19.

Livingstone DR (1993). Biotechnology and pollution monitoring: use of molecular biomarkers in the aquatic environment. J Chem Technol Biot 57: 195-211.

Macinnes JR, Calabrese A (1979). Combined effects of salinity, temperature, and copper on embryos and early larvae of the American oyster Crassostrea virginica. Arch Environ Con Tox 8: 553-562.

Magalhaes MF (1992). Feeding ecology of the Iberian cyprinid Barbus bocagei Steindachner, 1865 in a lowland river. J Fish Biol 40: 123-133.

Marshall WS, Grosell M (2005). Ion transport, osmoregulation and acid-base balance. In: Evans and Claiborne, editors. Physiology of fishes. CRC Press, Boca Raton pp 179-214

Mazon AF, Monteiro EAS, Pinheiro GHD, Fernandes MN (2002). Hematological and physiological changes induced by short-term exposure to copper in the freshwater fish, Prochilodus scrofa. Braz J Biol 62: 621-631.

McDonald DG, Wood CM (1993). Branchial mechanisms of acclimation to metals in freshwater fish. In: Rankin JC, Jensen FB, editors. Fish ecophysiolgy. Chapman & Hall, London, pp 297-321.

Mishra AK, Mohanty B (2008). Acute toxicity impacts of hexavalent chromium on behavior and histopathology of gill, kidney and liver of the freshwater fish, Channa punctatus (Bloch). Environ Toxicol Phar 26: 136–141.

Monteiro ET (2012). Avaliação de Biomarcadores em Vertebrados Aquáticos Face à Exposição Aguda de Cobre no Meio. MSc, School of Agriculture, Polytechnic Institute of Bragança, Portugal.

Niyogi S, Wood CM (2004). Kinetic analyses of waterborne Ca and Cd transport and their interactions in the gills of rainbow trout (Oncorhynchus mykiss) and yellow perch (Perca flavescens), two species differing greatly in acute waterborne Cd sensitivity. J Comp Physiol B 174: 243–253.

OECD (1992). Guideline for testing of chemicals - fish, acute toxicity test.

Pagenkopf RK (1983). Gill surface interaction model for trace-metal toxicity to fishes: role of complexation, pH, and water hardness. Environ Sci Technol 17: 342– 347.

Pandey S, Parvez S, Ansari RA, Ali M, Kaur M, Hayat F, Ahmad F, Raisuddin S (2008). Effects of exposure to multiple trace metals on biochemical, histological and ultrastructural features of gills of a freshwater fish, Channa punctata Bloch. Chem-Biol Interact 174: 183–192.

Pelgrom S, Lock R, Balm P, Bonga W (1997). Calcium fluxes in juvenile tilapia, Oreochromis mossambicus, exposed to sublethal waterborne Cd, Cu or mixtures of these metals. Environ Toxicol Chem 16: 770–774.

Saglam D, Atli G, Canli M (2013). Investigations on the osmoregulation of freshwater fish (Oreochromis niloticus) following exposures to metals (Cd, Cu) in differing hardness. Ecotox Environ Safe 92: 79–86.

Suvetha L, Ramesh M, Saravanan M (2010). Influence of cypermethrin toxicity on ionic regulation and gill Na(+)/K(+) ATPase activity of a freshwater teleost fish Cyprinus carpio. Environ Toxicol Phar 29: 44–49.

Taylor L, Mcfarlane N WJ, Pyle GG, Couture PE, McDonald DG (2004). Use of performance indicators in evaluating chronic metal exposure in wild yellow perch (Perca flavenscens). Aquat Toxicol 67: 371-385.

Teixeira A, Fernandes C, Geraldes A, Varandas S (2015). Monitoring the impacts on the ecossystem integrity of Portelo stream (Douro basin, NE Portugal) after a large spill of mining wastes. 10th Iberian and 7th Iberoamerican Congress on Environmental Contamination and Toxicology, pp 314-315.

Wilson RW, Taylor EW (1993). The physiological responses of freshwater rainbow trout, Oncorhynchus mykiss, during acutely lethal copper exposure. J Comp Physiol B 163: 38-47.

Zhou T, Weis JS (1998). Swimming behavior and predator avoidance in three populations of Fundulus heteroclitus larvae after embryonic and/or larval exposure to methylmercury. Aquat Toxicol 43: 131–148.

Downloads

Publicado

2019-07-31

Como Citar

CONCEIÇÃO, F.; AHLEM, T.; AMILCAR, T. Changes on plasmatic electrolytes and behavior of freshwater fish, Luciobarbus bocagei, as a function of acute copper exposure. Gaia Scientia, [S. l.], v. 13, n. 1, 2019. DOI: 10.22478/ufpb.1981-1268.2019v13n1.46435. Disponível em: https://periodicos.ufpb.br/ojs/index.php/gaia/article/view/46435. Acesso em: 24 nov. 2024.

Edição

Seção

Ciências Ambientais