COVID-19 Pandemic in Brazil
an analysis of news and users’ comments
DOI:
https://doi.org/10.22478/ufpb.2763-9398.2022v16n.61265Keywords:
Misinformation, Social media, COVID-19, online journalism, BrazilAbstract
Amidst the pandemic of the new coronavirus, the proliferation of misinformation and fake news, dispute spaces of speech in virtual environments with journalism, especially in social media. This phenomenon includes hate speech and denial statements, which call into question a scientific investigation of the consequences of contamination on a large scale. Considering these facts, this work examines two critical aspects of this phenomenon: the content produced by users about news related to the pandemic and how internet users interact with this content. To this end, five journalistic portals were using Natural Language Processing and Data Science methods, such as sentiment analysis, probability modeling, readability, and temporality analysis. The results obtained allow us to present an overview of the reception of news and disinformation in the leading Brazilian news portals.
Downloads
References
AGGARWAL, Jai; RABINOVICH, Ella; STEVENSON, Suzanne. Exploration of gender differences in COVID-19 discourse on reddit. arXiv preprint arXiv:2008.05713, 2020.
ALI, Syed Mohd et al. Big data visualization: Tools and challenges. In: 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I). IEEE, 2016. p. 656-660.
BAINES, Rebecca L.; REGAN DE BERE, Sam. Optimizing patient and public involvement (PPI): Identifying its “essential” and “desirable” principles using a systematic review and modified Delphi methodology. Health Expectations, v. 21, n. 1, p. 327-335, 2018.
CARVALHO, Wellington; GUIMARÃES, Ádria Silva. Desinformação, Negacionismo e Automedicação: a relação da população com as drogas “milagrosas” em meio à pandemia da COVID-19. InterAmerican Journal of Medicine and Health, v. 3, 2020.
CHEN, Yanqing; SKIENA, Steven. Building sentiment lexicons for all major languages. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). 2014. p. 383-389.
CIRQUEIRA, Douglas et al. A literature review in preprocessing for sentiment analysis for Brazilian Portuguese social media. In: 2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI). IEEE, 2018. p. 746-749.
GANDIA, Rodrigo Marçal et al. Credibilidade e Confiabilidade das Redes Sociais nas Eleições. Revista Estudos Em Comunicação, v. 28, p. 201–218, 2015.
LI, Shaohua et al. Generative topic embedding: a continuous representation of documents. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2016. p. 666-675.
LIU, Qian et al. Health communication through news media during the early stage of the COVID-19 outbreak in China: digital topic modeling approach. Journal of medical Internet research, v. 22, n. 4, p. e19118, 2020.
NAEEM, Salman Bin; BHATTI, Rubina; KHAN, Aqsa. An exploration of how fake news is taking over social media and putting public health at risk. Health Information & Libraries Journal, v. 38, n. 2, p. 143-149, 2021.
PRANTL, David; PRANTL, Martin. Website traffic measurement and rankings: competitive intelligence tools examination. International Journal of Web Information Systems, 2018.
RAMÍREZ-GALLEGO, Sergio et al. A survey on data preprocessing for data stream mining: Current status and future directions. Neurocomputing, v. 239, p. 39-57, 2017.
RECUERO, Raquel; SOARES, Felipe. O Discurso Desinformativo sobre a Cura do COVID-19 no Twitter: Estudo de caso. E-Compós. 2021.
RODRIGUES, Lucas; JUNIOR, Ademir; LOBATO, Fabio. Notícias relacionadas a pessoas com deficiência: uma análise do conteúdo gerado pelos usuários em postagens de mídias sociais. In: Anais do XVI Encontro Nacional de Inteligência Artificial e Computacional. SBC, 2019. p. 811-822.
RODRIGUES, Lucas; JUNIOR, Antonio Jacob; LOBATO, Fábio. Análise de discursos em notícias sobre homofobia, racismo e sexismo em comentários de portais brasileiros de notícias. Anais do Computer on the Beach, v. 12, p. 467-474, 2021.
SAIF, Hassan et al. Contextual semantics for sentiment analysis of Twitter. Information Processing & Management, v. 52, n. 1, p. 5-19, 2016.
UNESCO, 2019. Jornalismo, Fake News & Desinformação. Manual para Educação e Treinamento em Jornalismo. p. 07-31. Disponível em: https://unesdoc.unesco.org/ark:/48223/pf0000368647?fbclid=IwAR1ltj8iF00MPv69hOx4WViYAHzMUlp8VoYlT0Mepi_TYL_utbV5xIgnnEk. Acesso em: 02 de agosto de 2021.
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Lucas Darlindo Freitas Rodrigues, Dra. Ana Prado, Fábio Manoel França Lobato
This work is licensed under a Creative Commons Attribution 4.0 International License.
A submissão de originais para Revista Culturas Midiáticas implica na transferência, pelos autores (as), dos direitos de publicação impressa e digital. Os direitos autorais para os artigos publicados são do autor (a), com direitos da Revista Culturas Midiáticas sobre a primeira publicação. Em virtude de sermos um periódico de acesso aberto, permite-se o uso gratuito dos artigos em aplicações educacionais, científicas, não comerciais, desde que citada a fonte (por favor, veja a Licença Creative Commons no rodapé desta página).