Water quality in the Brazilian semi-arid: bioprospecting of Chromobacterium violaceum for metal bioremediation

Autores

  • Feliphe Lacerda Souza de Alencar Universidade Federal do Rio Grande do Norte
  • Ermeton Duarte Do Nascimento Federal University of Rio Grande do Norte
  • Gilberto Corso Federal University of Rio Grande do Norte
  • Magnólia Fernandes Florêncio de Araújo Federal University of Rio Grande do Norte

DOI:

https://doi.org/10.22478/ufpb.1981-1268.2019v13n4.41420

Resumo

The environmental impacts from metal accumulation cause disorders that often hinder recovery and control of these locations. This study evaluated the physical-chemical and microbiological parameters of water quality in a reservoir located in semiarid region of Rio Grande do Norte, Brazil (near a mining iron industry), as well as bioprospecting Chromobacterium violaceum (wild strains and ATCC 12472) for metal bioremediation, through investigation, comparison and inferential analysis of their phenotypic resistance patterns to iron, manganese and zinc metals in different exposure times, concentrations and interactions. The physicochemical water analysis revealed acceptable parameters, except the pH of the fifth site. In this site it was isolated C. violaceum. Both C. violaceum strains were resistant to metals tested in different exposure intervals, concentrations and interactions (p <10-5). However, it was observed that the wild strain showed a more efficient acute phase response when compared to the standard it, especially for metal concentrations between 80 – 48 (10-1 g/l). Zinc when interacting individually or jointly with metals iron and manganese increased resistance patterns in wild strain, whereas the reverse process was verified for ATCC strains. The bioprospecting tests demonstrated the importance of C. violaceum as a tool for metals bioremediation and highlight the importance of environmental monitoring and application of bioremediation in areas impacted by the aforementioned problem.

Downloads

Não há dados estatísticos.

Biografia do Autor

Feliphe Lacerda Souza de Alencar, Universidade Federal do Rio Grande do Norte

Departamento de Microbiologia e Parasitologia Microbiologia ambiental

Ermeton Duarte Do Nascimento, Federal University of Rio Grande do Norte

Center of Biosciences, Department of Microbiology and Parasitology

Gilberto Corso, Federal University of Rio Grande do Norte

Center of Biosciences, Department of biophysics

Magnólia Fernandes Florêncio de Araújo, Federal University of Rio Grande do Norte

Center of Biosciences, Department of Microbiology and Parasitology

Referências

Abou-Shanab RAI, Berkum P, Angle JS. 2007. Heavy metal resistance and genotypic analysis of metal resistance in Gram-positive and Gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere, 68:360-367.

Agência Nacional de Água. Ministério do Meio Ambiente (ANA). 2011. Guia nacional de coleta e preservação de amostras - água, sedimentos, comunidade aquáticas e efluentes líquidos. CETESB.

Ahemad M, Malik A. 2012. Bioaccumulation of heavy metals by zinc resistant bacteria isolated from agricultural soils irrigated with wastewater. Bacteriology Journal, 2(1):12-21.

Alencar FLS, Navoni JÁ, Amaral VS. 2017. The use of bacterial bioremediation of metals in aquatic environments in the twenty-first century: a systematic review. Environmental science and pollution research, 25:1-15.

American Public Health Association (APHA); American Water Works Association (AWWA); Water Environmental Federation (WEF). 2012. Standard Methods for the Examination of Water and Wastewater, 21 ed. Washington.

Azevedo JS, Silva-Rocha R, Silva A, Carepo MSP, Schneider MPC. 2008. Gene expression of the arsenic resistance operon in Chromobacterium violaceum ATCC 12472. Can J Microbiol, 54(42): 137.

Bennion H et al. 2005. The use of a GIS-based inventory to provide a national assessment of standing waters at risk from eutrophication in Great Britain. Science and the Tota Environment, 344:259-273.

Brasil. Resolução CONAMA 357, de 17 de março de 2005. Dispõe sobre a classificação de corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Diário Oficial da União, Brasília, DF, n. 53, 18 de março de 2005, section 1:58-63.

______. Resolução CONAMA 420, de 28 de dezembro de 2009. Dispõe sobre critérios e valores orientadores de qualidade do solo quanto à presença de substâncias químicas e estabelece diretrizes para o gerenciamento ambiental de áreas contaminadas por essas substâncias em decorrência de atividades antrópicas. Diário Oficial da União, Brasília, DF, n. 249, 30 de dezembro de 2009, p. 81-84.

Bruins M, Kapil SE, Oehme F. 2000. Microbial resistance to metal in the environment. Ecotoxicology and Environmental Safety, 45:198-207.

Carepo MSP. et al. 2004. Identification of Chromobacterium violaceum genes with potential biotechnological application in environmental detoxification. Genetics and Molecular Research, 3(1):181-194.

Castro-Silva MA, Lima AOS, Gerchenski AV et al. 2003. Heavy metal resistance of microorganisms isolated from coal mining environments of Santa Catarina. Braz. J. Microbiol, 34:7-45.

Dias JP et al. 2005. Chromobacteriosis in Ilhéus, Bahia: epidemiologic, clinical and laboratorial investigation. Revista da Sociedade Brasileira de Medicina Tropical, 38(6):503-506.

Ellis RJ, Morgan P, Weightman AJ, Fry JC. 2003. Cultivation dependant and independent approache for determining bacterial diversity in heavy-metal contaminated soil. Applied Environmental Microbiology, 69:3223-3230.

Gaylarde CC, Belinaso ML, Manfio GP. 2005. Aspectos biologicos e técnicos da biorremediaçao de xenobióticos. Biotecnologia ciência e desenvolvimento, 34:36 – 43.

Hofer C, Borer F, Bono R, Kayser A, Papritz A. 2013. Predicting topsoil heavy metal content of parcels of land: An empirical validation of customary and constrained lognormal block kriging and conditional simulations. Geoderma, 193-194:200-212.

Instituto Brasileiro de Geografia e Estatistica (IBGE). Censo Demografico do múnicipio de Jucurutu, 2010. Available at: http://cidades.ibge.gov.br/xtras/perfil.php?lang=&codmun=240610. Acessed in: February 2015.

Javis AP, Younger PL. 2000. EIA procedure: Broadening the scope of mine water environmental impact assessment: a UK perspective. Environmental Impact Assessment Review, 85-96.

Kermani AJN et al. 2010. Cadmium bioremediation by metal-resistant mutated bacteria isolated from active sludge of industrial effluent. Iranian Journal of Environmental Health Science and Engineering, 10(4):279-286.

Lima DC, Duarte FT, Medeiros VKS et al. 2014. The influence of iron on the proteomic profile of Chromobacterium violaceum. BMC Microbiology, 14:267.

Lima-Bittencourt CI et al. 2007. Analysis of Chromobacterium sp. natural isolates from different Brazilian ecosystems. BMC microbiology, 7:58.

Martins ALC, Bataglia OC, Camargo OA. 2003. Copper, nickel and zinc phytoavailability in an oxisol amended with sewage sludge and liming. Scientia Agricola, 60(4):747-754.

Ministério de Minas e Energia – Secretaria de Geologia, Mineração e Transformação Mineral. Diagnóstico do município de Jucurutu. 2005. Projeto cadastro de fontes de abastecimento por água subterrânea – Rio Grande do Norte – RN.

R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, Available at: http://www.R-project.org/. Acessed January 2016.

Rathnayake IVN, Megharaj M, Bolan N, Naidu R. 2009. Tolerance of heavy metal by Gram positive soil bacteria. World Academy of Science, Engineering and Technology, 53:1185-1189.

Santos VO. 2010. Physico Chemical Analysis of water collected from Rio Itapetininga-SP: a comparison between two collection points. Revista Eletrônica de Biologia, 3(1):99-115.

Sheng J, Wang X, Gong P, Tian L, Yao T. 2012. Heavy metals of the Tibetan top soils: Level, source, spatial distribution, temporal variation and risk assessment. Environmental Science and Pollution Research, 19:3362-3370.

Silva RCA and Araújo TM. 2003. Groundwater quality in urban areas of Feira de Santana, State of Bahia. Ciência e Saúde Coletiva, 9(4):1019-1028.

Singh A et al. 2010. Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food and Chemical Toxicology, 48:611-619.

Smith AD and Hunt RJ. 1985. Solubilisation of gold by Chromobacterium violaceum. Journal Chemistry Technology Biotechnology, 35(2):110-116.

Smith VH and Schindler DW. 2009. Eutrophication science : where do we go from here ? Trends in Ecology and Evolution, 24:201-207.

Sousa W, Attayde JL, Rocha ES, Eskinazi-Sant’Anna EM. 2008. The response of zooplankton assemblages to variations in the water quality of four man-made lakes in semi-arid northeastern Brazil. Journal of Plankton Research, 30(6):699-708.

Sumita TC, Pereira RS, Silva MB, Rosa LCL, Ueno M. 2007. Evaluation of interaction of Zinc, Aluminum, Copper and Manganese on Chromobacterium violaceum. Ambiente & Água - An Interdisciplinary Journal of Applied Science, 2:44-53.

Vargas-García MC, López MJ, Suárez-Estrella F, Moreno J. 2012. Compost as a source of microbial isolates for the bioremediation of heavy metals: in vitro selection. Sci. Total Environ, 431:62-67.

Velasquez L and Dussan J. 2009. Biosorption and bioaccumu- lation of heavy metals on dead and living biomass of Bacillus sphaericus. Journal of Hazardous Materials, 167:713-716.

Weber J.2004. Biogeochemical processes and role of heavy metals in the soil environment. Geoderma, 122:105-107.

Publicado

2019-12-30

Como Citar

ALENCAR, F. L. S. de; DO NASCIMENTO, E. D.; CORSO, G.; ARAÚJO, M. F. F. de. Water quality in the Brazilian semi-arid: bioprospecting of Chromobacterium violaceum for metal bioremediation. Gaia Scientia, [S. l.], v. 13, n. 4, 2019. DOI: 10.22478/ufpb.1981-1268.2019v13n4.41420. Disponível em: https://periodicos.ufpb.br/index.php/gaia/article/view/41420. Acesso em: 18 abr. 2024.

Edição

Seção

Ciências Ambientais